Marking Scheme Strictly Confidential (For Internal and Restricted use only) Senior School Certificate Examination, 2024

SUBJECT PHYSICS (CODE 55/3/1)

General Instructions: -

1	You are aware that evaluation is the most important process in the actual and correct assessment of the candidates. A small mistake in evaluation may lead to serious problems which may affect the future of the candidates, education system and teaching profession. To avoid mistakes, it is requested that before starting evaluation, you must read and understand the spot evaluation guidelines carefully.
2	"Evaluation policy is a confidential policy as it is related to the confidentiality of the
	examinations conducted, Evaluation done and several other aspects. Its' leakage to public in
	any manner could lead to derailment of the examination system and affect the life and future
	of millions of candidates. Sharing this policy/document to anyone, publishing in any
	magazine and printing in News Paper/Website etc may invite action under various rules of
	the Board and IPC."
	the Board and II C.
3	Evaluation is to be done as per instructions provided in the Marking Scheme. It should not be done
	according to one's own interpretation or any other consideration. Marking Scheme should be
	strictly adhered to and religiously followed. However, while evaluating, answers which are
	based on latest information or knowledge and/or are innovative, they may be assessed for
	their correctness otherwise and due marks be awarded to them. In class-X, while evaluating
	two competency-based questions, please try to understand given answer and even if reply is
	not from marking scheme but correct competency is enumerated by the candidate, due
	marks should be awarded.
4	The Marking ashome coming only suggested value maints for the answers. These are in the nature
4	The Marking scheme carries only suggested value points for the answers. These are in the nature
	of Guidelines only and do not constitute the complete answer. The students can have their own
	expression and if the expression is correct, the due marks should be awarded accordingly.
5	The Head-Examiner must go through the first five answer books evaluated by each evaluator on
	the first day, to ensure that evaluation has been carried out as per the instructions given in the
	Marking Scheme. If there is any variation, the same should be zero after delibration and
	discussion. The remaining answer books meant for evaluation shall be given only after ensuring
	that there is no significant variation in the marking of individual evaluators.
6	Evaluators will mark($\sqrt{\ }$) wherever answer is correct. For wrong answer CROSS 'X" be marked.
	Evaluators will not put right () while evaluating which gives an impression that answer is correct
	and no marks are awarded. This is most common mistake which evaluators are committing.
7	If a greation has news places around montes on the wight hand side for each new Made 11.10
7	If a question has parts, please award marks on the right-hand side for each part. Marks awarded for
	different parts of the question should then be totaled up and written in the left-hand margin and
	encircled. This may be followed strictly.
8	If a question does not have any parts, marks must be awarded in the left-hand margin and
	encircled. This may also be followed strictly.
	chemorea. This may also be followed suredy.

Page 1 of 15 55/3/1

9	If a student has attempted an extra question, answer of the question deserving more marks should				
	be retained and the other answer scored out with a note "Extra Question".				
10	No marks to be deducted for the cumulative effect of an error. It should be penalized only once.				
11	A full scale of marks 0-70 has to be used. Please do not hesitate to award full marks if the answer				
	deserves it.				
12	Every examiner has to necessarily do evaluation work for full working hours i.e., 8 hours every				
	day and evaluate 20 answer books per day in main subjects and 25 answer books per day in other				
	subjects (Details are given in Spot Guidelines). This is in view of the reduced syllabus and number				
	of questions in question paper.				
	of questions in question paper.				
13	Ensure that you do not make the following common types of errors committed by the Examiner in				
	the past:-				
	the past.				
	Leaving answer or part thereof unassessed in an answer book.				
	Giving more marks for an answer than assigned to it.				
	Wrong totaling of marks awarded on an answer.				
	Wrong transfer of marks from the inside pages of the answer book to the title page.				
	Wrong question wise totaling on the title page.				
	Wrong totaling of marks of the two columns on the title page.				
	Wrong grand total.				
	Marks in words and figures not tallying/not same.				
	Wrong transfer of marks from the answer book to online award list.				
	• Answers marked as correct, but marks not awarded. (Ensure that the right tick mark is correctly and clearly indicated. It should merely be a line. Same is with the X for incorrect				
	answer.)				
	 Half or a part of answer marked correct and the rest as wrong, but no marks awarded. 				
14	While evaluating the answer books if the answer is found to be totally incorrect, it should be				
	marked as cross (X) and awarded zero (0)Marks.				
	marked as cross (11) and awarded zero (0)/viarks.				
15	Any unassessed portion, non-carrying over of marks to the title page, or totaling error detected by				
	the candidate shall damage the prestige of all the personnel engaged in the evaluation work as also				
	of the Board. Hence, in order to uphold the prestige of all concerned, it is again reiterated that the				
	instructions be followed meticulously and judiciously.				
	instructions be followed ineticulously and judiciously.				
16	The Examiners should acquaint themselves with the guidelines given in the "Guidelines for Spot				
	Evaluation " before starting the actual evaluation.				
	Evaluation before starting the actual evaluation.				
17	Every Examiner shall also ensure that all the answers are evaluated, marks carried over to the title				
	page, correctly totaled and written in figures and words.				
	page, control in inguies and moras.				
18	The candidates are entitled to obtain photocopy of the Answer Book on request on payment of the				
	prescribed processing fee. All Examiners/Additional Head Examiners/Head Examiners are once				
	again reminded that they must ensure that evaluation is carried out strictly as per value points for				
	, , , , , , , , , , , , , , , , , , , ,				
	each answer as given in the Marking Scheme.				

55/3/1 Page 2 of 15

	MARKING SCHEME: PHYSICS (042)			
Q.NO.	CODE :55/3/1 VALUE POINTS/ EXPECTED ANSWERS	MARKS	TOTAL MARKS	
	SECTION-A			
1.	(B) Spherical surface	1	1	
2.	(B) 1.6×10^{-18} J	1	1	
3.	(C) –(0.24 nT) \hat{k}	1	1	
4.	(D) remain stationary	1	1	
5.	(B) 0.3 MB	1	1	
6.	(C) 15.0 V	1	1	
7.	(B) 1 is decreased and A is increased	1	1	
8.	(B) Gamma rays	1	1	
9.	(B) 2	1	1	
10.	$(\mathbf{C}) \qquad \qquad \bigwedge_{\mathbf{k_m}}$	1	1	
11.	(B) decreased by 87.5%	1	1	
12.	(B) 0.05 eV	1	1	
13.	(D) Assertion (A) is false and Reason (R) is also false.	1	1	
14.	(C) Assertion (A) is true but Reason (R) is false.	1	1	
15.	(A) Both Assertion (A) and Reason (R) are true and Reason (R) is the correct explanation of the Assertion(A).	1	1	
16.	(A) Both Assertion (A) and Reason (R) are true and Reason (R) is the correct explanation of the Assertion(A).	1	1	
	SECTION- B			
17.	(a) Meaning of relaxation time $\frac{1}{2}$ Derivation of R $\frac{1}{2}$ Average time between two successive collisions of electron in presence of electric field Drift velocity of an electron $v_d = \frac{eE}{m}\tau \qquad(i)$	1/2		
	Current flowing through a conductor of length l and area of cross section A $I = neAv_d \qquad(ii)$ $I = \frac{ne^2 AE\tau}{m} = \frac{ne^2 A\tau V}{ml}$ $R = \frac{V}{I} = \frac{ml}{ne^2 \tau A}$ OR (b) Circuit diagram of Wheatstone bridge \frac{1}{2} \text{Obtaining the condition when no current flows through galvanometer} \frac{1}{2}	1/2	2	

55/3/1 Page 3 of 15

	By applying Kirchoff's loop rule to closed loops ADBA and CBDC	1/2	
	$-I_{1}R_{1} + 0 + I_{2}R_{2} = 0 \qquad(i) [I_{g} = 0]$ $I_{2}R_{4} + 0 - I_{1}R_{3} = 0 \qquad(ii)$ From eq (i)-	1/2	
	$\frac{I_1}{I_2} = \frac{R_2}{R_1}$ From eq (ii)-	1/2	
	$\frac{I_1}{I_2} = \frac{R_4}{R_3}$		
	Hence, $\frac{R_2}{R_1} = \frac{R_4}{R_3}$	1/2	2
18.	Finding the focal length of objective lens 2 Magnifying power = 24 , Distance between lenses =150 cm $\frac{f_o}{f_e} = 24$ $f_o + f_e = 150 \text{ cm}$ $f_e = 6 \text{ cm}$ $f_o = 144 \text{ cm}$	1/ ₂ 1/ ₂ 1/ ₂ 1/ ₂ 1/ ₂	2
19.	(a) Explanation of magnification 1 (b) Explanation 1		
	 (a) Yes, it offers magnification. We can keep the small object much closer to the eye than 25 cm and hence have it subtend a large angle. (b) Yes, Rays converging to a point behind a plane or convex mirror are reflected to a point in front of the mirror on a screen 	1/ ₂ 1/ ₂ 1/ ₂ 1/ ₂	2
20.	Calculation of number of photons per second 2		
	Total Energy gained per second from photon= IA $E = N hv$	1/2	

55/3/1 Page 4 of 15

	$IA = N \times \frac{hc}{\lambda}$		
	$N = \frac{[IA]\lambda}{hc}$		
	$N = \frac{[0.1 \times 10^{-9} \times 0.4 \times 10^{-4}] \times 500 \times 10^{-9}}{6.6 \times 10^{-34} \times 3 \times 10^{8}}$	1	
	$N = \frac{1}{6.6 \times 10^{-34} \times 3 \times 10^8}$	1	
	$N = 1.01 \times 10^4$	1/2	2
21.	Calculation of concentration of holes & electrons 2		
	$n_e n_{_h} = n_i^2$	1/2	
	$n_h \approx 5 \times 10^{22} / m^3$		
	$n_e = rac{n_i^2}{n_h}$		
	· · · · · · · · · · · · · · · · · · ·		
	$n_e = \frac{(1.5 \times 10^{16})^2}{5 \times 10^{22}}$	1/2	
	$n_e = 4.5 \times 10^9 / m^3$	1/2	
	$n_h > n_e$, it is a p- type crystal	1/2	2
	SECTION- C		
22.	Determination of current in branches AB, AC, BC 1+1+1		
	Determination of current in branches AB, AC, BC		
	$\begin{array}{c c} & & & & & & & & & & & & & & & & & & &$		
	For closed loop ADCA, $10-4(I_1-I_2)+2(I_2+I_3-I_1)-I_1=0$ $7I_1-6I_2-2I_3=10 (i)$ For closed loop ABCA,	1/2	
	$10-4I_2-2(I_2+I_3)-I_1=0$ $I_1+6I_2+2I_3=10$ (ii)	1/2	
	For closed loop BCDED, $5-2(I_2+I_3)-2(I_2+I_3-I_1)=0$ $2I_1-4I_2-4I_3=-5$ (iii)	1/2	
	Current in branch AB = $I_2 = \frac{5}{8}A$ Current in branch AC = $I_1 = 2.5A$	1/ ₂ 1/ ₂	
	Current in branch BC = $I_2 + I_3 = 2.5A$	1/2	3

55/3/1 Page 5 of 15

Reason for exerting force on straight parallel conductors ½		
Derivation for force per unit length 2 Explanation of nature of Force ½		
Explanation of nature of Force 72		
One conductor experiences a force due to magnetic field of the other conductor	1/2	
a d d d d d d d d d d d d d d d d d d d	1/2	
Magnetic field produced by conductor 'a' at all points along the length of conductor 'b' $B_a = \frac{\mu_0 I_a}{2\pi d}$		
Force on conductor 'b' due to this magnetic field	1/2	
$F_{ba} = I_b L B_a \ F_{ba} = rac{\mu_0 I_a I_b L}{2\pi d}$	1/2	
$f_{ba} = rac{F_{ba}}{L} = rac{\mu_0 I_a I_b}{2\pi d}$ directed away from a $f_{ab} = rac{F_{ab}}{L} = rac{\mu_0 I_a I_b}{2\pi d}$ directed away from b	1/2	
$f_{ab} = \frac{F_{ab}}{I_a} = \frac{\mu_0 I_a I_b}{2\pi d}$ directed away from b		
Repulsive, the forces acting on them are away from each other.	1/2	3
(a) Identifying the element X (b) Writing the formula for reactance (c) Showing variation of reactance with frequency (d) Explanation of behavior of element with (i) an ac circuit (ii) a dc circuit (iv) a dc circuit (v) 2 (v) 4/2		
(a) Capacitor	1/2	
(b) $X_c = \frac{1}{\omega c}$		
ωc ωc	1/2	

55/3/1 Page 6 of 15

	(c) Frequency (v) Frequency Fr	1	
	(d) (i) For ac X_c is finite and therefore allows the ac to pass. (ii) For dc X_c is infinite and therefore does not allow the dc to pass.	1/ ₂ 1/ ₂	3
25.	(a) Finding the wavelength and frequency (b) Finding the amplitude of magnetic field (c) Writing expression for magnetic field 1/2		
	(a) $k = \frac{2\pi}{\lambda}$	1/2	
	$\lambda = \frac{2\pi}{K} = \frac{4\pi}{3} \mathrm{m} = 4.18 \mathrm{m}$	1/2	
	$\omega = 2\pi \upsilon$ $\omega = 4.5 \times 10^8 \text{ Hz}$		
	$v = \frac{\omega}{2\pi} = \frac{4.5 \times 10^8}{2\pi} \text{Hz}$	1/2	
	$v = \frac{9}{4\pi} \times 10^8 \text{ Hz}$ v=7.16×10 ⁻¹ Hz	1/2	
	(b) $B_0 = \frac{E_0}{c}$		
	$B_0 = \frac{6.3}{3 \times 10^8} = 2.1 \times 10^{-8} \text{T}$	1/2	
	(c) $\vec{B} = 2.1 \times 10^{-8} [(\cos 1.5 \text{ rad/m}) \text{ y} + (4.5 \times 10^8 \text{ rad/s}) \text{ t}] \hat{k} \text{ T}$	1/2	3
26.	Statements of Bohr's first and second Postulates Derivation of expression for radius of n th orbit 2		
	 Bohr's first postulate An electron in an atom revolves in certain stable orbits without the emission of radiant energy. Bohr's second postulate 	1/2	
	Electron revolves around the nucleus only in those orbits for which the angular momentum is integral multiple of $\frac{h}{2\pi}$.	1/2	
	Electrostatic force between revolving electron and nucleus provides requisite centripetal force $mv^2 = 1 - e^2$		
	$\frac{mv_n^2}{r_n} = \frac{1}{4\pi\varepsilon_{_0}} \frac{e^2}{r_n^2}$	1/2	_

55/3/1 Page 7 of 15

	$v_n = \frac{e}{\sqrt{4\pi\varepsilon_0 mr_n}} \qquad(i)$	1/2	
	$mv_n r_n = \frac{nh}{2\pi}$	1/2	
	using equations (i) and (ii) $r_n = \left(\frac{n^2}{m}\right) \left(\frac{h}{2\pi}\right)^2 \frac{4\pi\varepsilon_0}{e^2}$	1/2	3
27.	(a) Definition of atomic mass unit (u) 1 (b) Calculation of energy required 2		
	(a) atomic mass unit (u) is defined as $1/12^{th}$ of the mass of the carbon (^{12}C) atom.	1	
	(b) $m(_1H^2) \rightarrow m(_1H^1) + m(_0n^1)$ $Q = (m_R - m_P) \times 931.5 MeV$	1/2	
	$= (2.014102 - 1.007825 - 1.008665) \times 931.5 MeV$ $= -0.002388 \times 931.5 MeV$	1/ ₂ 1/ ₂	
	=-2.224 <i>MeV</i> Hence energy required is 2.224 MeV	1/2	3
28.	(a) Drawing the circuit diagram for V-I characteristics Salient features of V-I characteristics in (i) Forward biasing 1 (ii) Reverse biasing 1	1	
	Milliammeter (mA) Switch (a) Switch (b)		
	[any one circuit diagram]		
	Salient features (i) Forward biasing- After threshold voltage or cut in voltage diode current increases significantly (exponentially), even for a small increase in the diode bias voltage. (ii) Reverse biasing- Current is very small (~μA) and almost remains	1	
	constant and it increases rapidly after breakdown voltage.		
	OR		

55/3/1 Page 8 of 15

55/3/1 Page 9 of 15

(c) on the plate of capacitance. Electric field with dielectric medium is $E = \frac{(\sigma - \sigma_P)}{\varepsilon_0}$ $V = E \times d = \frac{(\sigma - \sigma_P)}{\varepsilon_0} d$ $(\sigma - \sigma_P) = \frac{\sigma}{R}$ $V = \frac{cd}{\varepsilon_0 K} = \frac{Od}{A\varepsilon_0 K}$ $C = \frac{Q}{V} = \frac{Ks_0 A}{d}$ (ii) Electric potential due to a point charge $V = \frac{1}{4\pi \varepsilon_0} \frac{q}{r} = \frac{9 \times 10^{9} \times 6 \times 10^{-6}}{9.2}$ (ii) At the surface $V = \frac{1}{4\pi \varepsilon_0} \frac{q}{r} = \frac{9 \times 10^{9} \times 6 \times 10^{-6}}{9.2}$ (i) At the surface $V = \frac{1}{4\pi \varepsilon_0} \frac{q}{r} = \frac{9 \times 10^{9} \times 6 \times 10^{-6}}{9.2}$ (ii) Since electric field inside the hollow sphere is zero, hence V is same as that of the surface and remains constant throughout the volume. $V = 2.7 \times 10^5 \text{ V}$ (ii) Since electric field at a point lying (i) inside (ii) outside 1/2 (ii) explanation 1/2 (iii) Explanation 1/2 (iiii) Explanation 1/2 (iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii		1 1 C '4	1/	
$E = \frac{(\sigma - \sigma_P)}{\epsilon_0}$ $V = E \times d = \frac{(\sigma - \sigma_P)}{\epsilon_0} d$ $V = E \times d = \frac{(\sigma - \sigma_P)}{\epsilon_0} d$ $V = \frac{\sigma}{\kappa}$ $V = \frac{\sigma}{\epsilon_0} = \frac{Od}{\kappa_0 \kappa}$ $V = \frac{\sigma}{\epsilon_0 \kappa} = \frac{Od}{\kappa_0 \kappa}$ $V = \frac{\sigma}{\epsilon_0 \kappa} = \frac{Od}{\kappa_0 \kappa}$ $V = \frac{1}{4\pi \epsilon_0} \frac{a}{r} = \frac{0 \times 10^5 \times 6 \times 10^{-6}}{0.2}$ $V = 2.7 \times 10^5 \text{ V}$ (ii) Since electric field inside the hollow sphere is zero, hence V is same as that of the surface and remains constant throughout the volume. $V = 2.7 \times 10^5 \text{ V}$ (ii) Since electric field at a point lying (i) inside (ii) outside (ii) outside (iii) outside (iiii) explanation 2 The Flux through the Gaussian surface Surface charge. Gaussian surface Surface charge. Feld inside the shell Gaussian surface Surface charge. Hence $E \times 4\pi R^2 = 0$ $E \times 4\pi R^2 = 0$ $E = 0$ (Note: Award full credit of this part if a student writes directly $E = 0$,	\ /	1 1	1/2	
$(\sigma - \sigma_P) = \frac{\sigma}{\kappa}$ $V = \frac{\sigma d}{\epsilon_0 K} = \frac{O d}{A \epsilon_0 K}$ $V = \frac{\sigma}{4 \pi \epsilon_0 r} = \frac{N \epsilon_{\sigma_0} A}{d}$ (ii) Electric potential due to a point charge $V = \frac{1}{4 \pi \epsilon_0 r} = \frac{9}{4 \pi \epsilon_0 r} = \frac{9 \times 10^9 \times 6 \times 10^{-6}}{0.2}$ (i) At the surface $V = \frac{1}{4 \pi \epsilon_0 r} = \frac{9 \times 10^9 \times 6 \times 10^{-6}}{0.2}$ $V = 2.7 \times 10^5 \text{ V}$ (ii) Since electric field inside the hollow sphere is zero, hence V is same as that of the surface and remains constant throughout the volume. $V = 2.7 \times 10^5 \text{ V}$ OR (b) (i) Expression for electric field at a point lying (i) inside (ii) inside 12 (ii) inside 12 (ii) explanation 2 (ii) Explanation 2 (iii) Explanation 2 (iv) Field inside the shell Gaussian surface Surface charge density σ The Flux through the Gaussian surface is $= E \times 4\pi R^2$ In this case Gaussian surface encloses no charge. Hence $E \times 4\pi R^2 = 0$ E = 0 (Note: Award full credit of this part if a student writes directly E=0,	Elec	etric field with dielectric medium is		
$(\sigma - \sigma_P) = \frac{\sigma}{\kappa}$ $V = \frac{\sigma d}{\epsilon_0 K} = \frac{O d}{A \epsilon_0 K}$ $V = \frac{\sigma}{4 \pi \epsilon_0 r} = \frac{N \epsilon_{\sigma_0} A}{d}$ (ii) Electric potential due to a point charge $V = \frac{1}{4 \pi \epsilon_0 r} = \frac{9}{4 \pi \epsilon_0 r} = \frac{9 \times 10^9 \times 6 \times 10^{-6}}{0.2}$ (i) At the surface $V = \frac{1}{4 \pi \epsilon_0 r} = \frac{9 \times 10^9 \times 6 \times 10^{-6}}{0.2}$ $V = 2.7 \times 10^5 \text{ V}$ (ii) Since electric field inside the hollow sphere is zero, hence V is same as that of the surface and remains constant throughout the volume. $V = 2.7 \times 10^5 \text{ V}$ OR (b) (i) Expression for electric field at a point lying (i) inside (ii) inside 12 (ii) inside 12 (ii) explanation 2 (ii) Explanation 2 (iii) Explanation 2 (iv) Field inside the shell Gaussian surface Surface charge density σ The Flux through the Gaussian surface is $= E \times 4\pi R^2$ In this case Gaussian surface encloses no charge. Hence $E \times 4\pi R^2 = 0$ E = 0 (Note: Award full credit of this part if a student writes directly E=0,				
$(\sigma - \sigma_P) = \frac{\sigma}{\kappa}$ $V = \frac{\sigma d}{\epsilon_0 K} = \frac{O d}{A \epsilon_0 K}$ $V = \frac{\sigma}{4 \pi \epsilon_0 r} = \frac{N \epsilon_{\sigma_0} A}{d}$ (ii) Electric potential due to a point charge $V = \frac{1}{4 \pi \epsilon_0 r} = \frac{9}{4 \pi \epsilon_0 r} = \frac{9 \times 10^9 \times 6 \times 10^{-6}}{0.2}$ (i) At the surface $V = \frac{1}{4 \pi \epsilon_0 r} = \frac{9 \times 10^9 \times 6 \times 10^{-6}}{0.2}$ $V = 2.7 \times 10^5 \text{ V}$ (ii) Since electric field inside the hollow sphere is zero, hence V is same as that of the surface and remains constant throughout the volume. $V = 2.7 \times 10^5 \text{ V}$ OR (b) (i) Expression for electric field at a point lying (i) inside (ii) inside 12 (ii) inside 12 (ii) explanation 2 (ii) Explanation 2 (iii) Explanation 2 (iv) Field inside the shell Gaussian surface Surface charge density σ The Flux through the Gaussian surface is $= E \times 4\pi R^2$ In this case Gaussian surface encloses no charge. Hence $E \times 4\pi R^2 = 0$ E = 0 (Note: Award full credit of this part if a student writes directly E=0,		$(\sigma - \sigma_{\rm p})$	1/	
$(\sigma - \sigma_P) = \frac{\sigma}{\kappa}$ $V = \frac{\sigma d}{\epsilon_0 K} = \frac{O d}{A \epsilon_0 K}$ $V = \frac{\sigma}{4 \pi \epsilon_0 r} = \frac{N \epsilon_{\sigma_0} A}{d}$ (ii) Electric potential due to a point charge $V = \frac{1}{4 \pi \epsilon_0 r} = \frac{9}{4 \pi \epsilon_0 r} = \frac{9 \times 10^9 \times 6 \times 10^{-6}}{0.2}$ (i) At the surface $V = \frac{1}{4 \pi \epsilon_0 r} = \frac{9 \times 10^9 \times 6 \times 10^{-6}}{0.2}$ $V = 2.7 \times 10^5 \text{ V}$ (ii) Since electric field inside the hollow sphere is zero, hence V is same as that of the surface and remains constant throughout the volume. $V = 2.7 \times 10^5 \text{ V}$ OR (b) (i) Expression for electric field at a point lying (i) inside (ii) inside 12 (ii) inside 12 (ii) explanation 2 (ii) Explanation 2 (iii) Explanation 2 (iv) Field inside the shell Gaussian surface Surface charge density σ The Flux through the Gaussian surface is $= E \times 4\pi R^2$ In this case Gaussian surface encloses no charge. Hence $E \times 4\pi R^2 = 0$ E = 0 (Note: Award full credit of this part if a student writes directly E=0,	E	$=\frac{(0 - 0p)}{1}$	1/2	
$(\sigma - \sigma_P) = \frac{\sigma}{\kappa}$ $V = \frac{\sigma d}{\epsilon_0 K} = \frac{O d}{A \epsilon_0 K}$ $V = \frac{\sigma}{4 \pi \epsilon_0 r} = \frac{N \epsilon_{\sigma_0} A}{d}$ (ii) Electric potential due to a point charge $V = \frac{1}{4 \pi \epsilon_0 r} = \frac{9}{4 \pi \epsilon_0 r} = \frac{9 \times 10^9 \times 6 \times 10^{-6}}{0.2}$ (i) At the surface $V = \frac{1}{4 \pi \epsilon_0 r} = \frac{9 \times 10^9 \times 6 \times 10^{-6}}{0.2}$ $V = 2.7 \times 10^5 \text{ V}$ (ii) Since electric field inside the hollow sphere is zero, hence V is same as that of the surface and remains constant throughout the volume. $V = 2.7 \times 10^5 \text{ V}$ OR (b) (i) Expression for electric field at a point lying (i) inside (ii) inside 12 (ii) inside 12 (ii) explanation 2 (ii) Explanation 2 (iii) Explanation 2 (iv) Field inside the shell Gaussian surface Surface charge density σ The Flux through the Gaussian surface is $= E \times 4\pi R^2$ In this case Gaussian surface encloses no charge. Hence $E \times 4\pi R^2 = 0$ E = 0 (Note: Award full credit of this part if a student writes directly E=0,		ε_0		
$(\sigma - \sigma_P) = \frac{\sigma}{\kappa}$ $V = \frac{\sigma d}{\epsilon_0 K} = \frac{O d}{A \epsilon_0 K}$ $V = \frac{\sigma}{4 \pi \epsilon_0 r} = \frac{N \epsilon_{\sigma_0} A}{d}$ (ii) Electric potential due to a point charge $V = \frac{1}{4 \pi \epsilon_0 r} = \frac{9}{4 \pi \epsilon_0 r} = \frac{9 \times 10^9 \times 6 \times 10^{-6}}{0.2}$ (i) At the surface $V = \frac{1}{4 \pi \epsilon_0 r} = \frac{9 \times 10^9 \times 6 \times 10^{-6}}{0.2}$ $V = 2.7 \times 10^5 \text{ V}$ (ii) Since electric field inside the hollow sphere is zero, hence V is same as that of the surface and remains constant throughout the volume. $V = 2.7 \times 10^5 \text{ V}$ OR (b) (i) Expression for electric field at a point lying (i) inside (ii) inside 12 (ii) inside 12 (ii) explanation 2 (ii) Explanation 2 (iii) Explanation 2 (iv) Field inside the shell Gaussian surface Surface charge density σ The Flux through the Gaussian surface is $= E \times 4\pi R^2$ In this case Gaussian surface encloses no charge. Hence $E \times 4\pi R^2 = 0$ E = 0 (Note: Award full credit of this part if a student writes directly E=0,	V	$=E\times d=\frac{(b-bp)}{b}d$	1/2	
$V = \frac{\sigma d}{\epsilon_0 K} - \frac{Od}{\Lambda \epsilon_0 K}$ $V = \frac{\sigma d}{\epsilon_0 K} - \frac{Od}{\Lambda \epsilon_0 K}$ $V = \frac{g}{V} = \frac{K\epsilon_0 A}{d}$ (ii) Electric potential due to a point charge $V = \frac{1}{4m\epsilon_0} \frac{q}{r} = \frac{9 \times 10^9 \times 6 \times 10^{-6}}{0.2}$ (i) At the surface $V = \frac{1}{4m\epsilon_0} \frac{q}{r} = \frac{9 \times 10^9 \times 6 \times 10^{-6}}{0.2}$ $V = 2.7 \times 10^5 \text{ V}$ (ii) Since electric field inside the hollow sphere is zero, hence V is same as that of the surface and remains constant throughout the volume. $V = 2.7 \times 10^5 \text{ V}$ OR (b) (i) Expression for electric field at a point lying (ii) inside (ii) outside (ii) Explanation 2 (i) Field inside the shell Gaussian surface Surface charge density σ $V = \frac{1}{4} \times \frac$		$arepsilon_0$, –	
$V = \frac{\sigma d}{\epsilon_0 K} - \frac{Od}{\Lambda \epsilon_0 K}$ $V = \frac{\sigma d}{\epsilon_0 K} - \frac{Od}{\Lambda \epsilon_0 K}$ $V = \frac{g}{V} = \frac{K\epsilon_0 A}{d}$ (ii) Electric potential due to a point charge $V = \frac{1}{4m\epsilon_0} \frac{q}{r} = \frac{9 \times 10^9 \times 6 \times 10^{-6}}{0.2}$ (i) At the surface $V = \frac{1}{4m\epsilon_0} \frac{q}{r} = \frac{9 \times 10^9 \times 6 \times 10^{-6}}{0.2}$ $V = 2.7 \times 10^5 \text{ V}$ (ii) Since electric field inside the hollow sphere is zero, hence V is same as that of the surface and remains constant throughout the volume. $V = 2.7 \times 10^5 \text{ V}$ OR (b) (i) Expression for electric field at a point lying (ii) inside (ii) outside (ii) Explanation 2 (i) Field inside the shell Gaussian surface Surface charge density σ $V = \frac{1}{4} \times \frac$				
$V = \frac{\sigma d}{\epsilon_0 K} - \frac{Od}{\Lambda \epsilon_0 K}$ $V = \frac{\sigma d}{\epsilon_0 K} - \frac{Od}{\Lambda \epsilon_0 K}$ $V = \frac{g}{V} = \frac{K\epsilon_0 A}{d}$ (ii) Electric potential due to a point charge $V = \frac{1}{4m\epsilon_0} \frac{q}{r} = \frac{9 \times 10^9 \times 6 \times 10^{-6}}{0.2}$ (i) At the surface $V = \frac{1}{4m\epsilon_0} \frac{q}{r} = \frac{9 \times 10^9 \times 6 \times 10^{-6}}{0.2}$ $V = 2.7 \times 10^5 \text{ V}$ (ii) Since electric field inside the hollow sphere is zero, hence V is same as that of the surface and remains constant throughout the volume. $V = 2.7 \times 10^5 \text{ V}$ OR (b) (i) Expression for electric field at a point lying (ii) inside (ii) outside (ii) Explanation 2 (i) Field inside the shell Gaussian surface Surface charge density σ $V = \frac{1}{4} \times \frac$	(0	$(\sigma - \sigma_n) = \frac{\sigma}{\sigma}$		
C = $\frac{Q}{V} = \frac{K \omega_0 A}{a}$ (ii) Electric potential due to a point charge $V = \frac{1}{4\pi\omega_0} \frac{q}{r}$ (i) At the surface $V = \frac{1}{4\pi\omega_0} \frac{q}{r} = \frac{9 \times 10^9 \times 6 \times 10^{-6}}{0.2}$ $V = 2.7 \times 10^5 \text{ V}$ (ii) Since electric field inside the hollow sphere is zero, hence V is same as that of the surface and remains constant throughout the volume. $V = 2.7 \times 10^5 \text{ V}$ OR (b) (i) Expression for electric field at a point lying (i) inside (ii) outside 2 (ii) Explanation 2 (ii) Explanation 2 (iii) Explanation 2 (iv) Field inside the shell Gaussian surface Surface charge density σ The Flux through the Gaussian surface is $V = E \times 4\pi R^2$ In this case Gaussian surface encloses no charge. Hence $E \times 4\pi R^2 = 0$ $E = 0$ (Note: Award full credit of this part if a student writes directly $E = 0$,	(0	K	1/2	
C = $\frac{Q}{V} = \frac{K \omega_0 A}{a}$ (ii) Electric potential due to a point charge $V = \frac{1}{4\pi\omega_0} \frac{q}{r}$ (i) At the surface $V = \frac{1}{4\pi\omega_0} \frac{q}{r} = \frac{9 \times 10^9 \times 6 \times 10^{-6}}{0.2}$ $V = 2.7 \times 10^5 \text{ V}$ (ii) Since electric field inside the hollow sphere is zero, hence V is same as that of the surface and remains constant throughout the volume. $V = 2.7 \times 10^5 \text{ V}$ OR (b) (i) Expression for electric field at a point lying (i) inside (ii) outside 2 (ii) Explanation 2 (ii) Explanation 2 (iii) Explanation 2 (iv) Field inside the shell Gaussian surface Surface charge density σ The Flux through the Gaussian surface is $V = E \times 4\pi R^2$ In this case Gaussian surface encloses no charge. Hence $E \times 4\pi R^2 = 0$ $E = 0$ (Note: Award full credit of this part if a student writes directly $E = 0$,				
C = $\frac{Q}{V} = \frac{K \omega_0 A}{a}$ (ii) Electric potential due to a point charge $V = \frac{1}{4\pi\omega_0} \frac{q}{r}$ (i) At the surface $V = \frac{1}{4\pi\omega_0} \frac{q}{r} = \frac{9 \times 10^9 \times 6 \times 10^{-6}}{0.2}$ $V = 2.7 \times 10^5 \text{ V}$ (ii) Since electric field inside the hollow sphere is zero, hence V is same as that of the surface and remains constant throughout the volume. $V = 2.7 \times 10^5 \text{ V}$ OR (b) (i) Expression for electric field at a point lying (i) inside (ii) outside 2 (ii) Explanation 2 (ii) Explanation 2 (iii) Explanation 2 (iv) Field inside the shell Gaussian surface Surface charge density σ The Flux through the Gaussian surface is $V = E \times 4\pi R^2$ In this case Gaussian surface encloses no charge. Hence $E \times 4\pi R^2 = 0$ $E = 0$ (Note: Award full credit of this part if a student writes directly $E = 0$,	V	$-\frac{\sigma d}{\sigma} = \frac{Qd}{Qd}$	1/4	
C = $\frac{Q}{V} = \frac{K \omega_0 A}{a}$ (ii) Electric potential due to a point charge $V = \frac{1}{4\pi\omega_0} \frac{q}{r}$ (i) At the surface $V = \frac{1}{4\pi\omega_0} \frac{q}{r} = \frac{9 \times 10^9 \times 6 \times 10^{-6}}{0.2}$ $V = 2.7 \times 10^5 \text{ V}$ (ii) Since electric field inside the hollow sphere is zero, hence V is same as that of the surface and remains constant throughout the volume. $V = 2.7 \times 10^5 \text{ V}$ OR (b) (i) Expression for electric field at a point lying (i) inside (ii) outside 2 (ii) Explanation 2 (ii) Explanation 2 (iii) Explanation 2 (iv) Field inside the shell Gaussian surface Surface charge density σ The Flux through the Gaussian surface is $V = E \times 4\pi R^2$ In this case Gaussian surface encloses no charge. Hence $E \times 4\pi R^2 = 0$ $E = 0$ (Note: Award full credit of this part if a student writes directly $E = 0$,	V	$\varepsilon_0 K$ A $\varepsilon_0 K$	72	
(ii) Electric potential due to a point charge $V = \frac{1}{4\pi\epsilon_0} \frac{q}{r}$ (i) At the surface $V = \frac{1}{4\pi\epsilon_0} \frac{q}{r} = \frac{9\times 10^9 \times 6\times 10^{-6}}{0.2}$ $V = 2.7 \times 10^5 \text{ V}$ (ii) Since electric field inside the hollow sphere is zero, hence V is same as that of the surface and remains constant throughout the volume. $V = 2.7 \times 10^5 \text{ V}$ OR (b) (i) Expression for electric field at a point lying (i) inside 1 (ii) outside 2 (ii) Explanation 2 2 (i) Field inside the shell Gaussian surface Surface charge density σ Field inside the shell Gaussian surface Surface charge density σ P The Flux through the Gaussian surface is σ σ σ σ σ σ σ σ				
(ii) Electric potential due to a point charge $V = \frac{1}{4\pi\epsilon_0} \frac{q}{r}$ (i) At the surface $V = \frac{1}{4\pi\epsilon_0} \frac{q}{r} = \frac{9\times 10^9 \times 6\times 10^{-6}}{0.2}$ $V = 2.7 \times 10^5 \text{ V}$ (ii) Since electric field inside the hollow sphere is zero, hence V is same as that of the surface and remains constant throughout the volume. $V = 2.7 \times 10^5 \text{ V}$ OR (b) (i) Expression for electric field at a point lying (i) inside 1 (ii) outside 2 (ii) Explanation 2 2 (i) Field inside the shell Gaussian surface Surface charge density σ Field inside the shell Gaussian surface Surface charge density σ P The Flux through the Gaussian surface is σ σ σ σ σ σ σ σ	_	$O = K \varepsilon_0 A$	1/2	
(ii) Electric potential due to a point charge $V = \frac{1}{4\pi\epsilon_0} \frac{q}{r}$ (i) At the surface $V = \frac{1}{4\pi\epsilon_0} \frac{q}{r} = \frac{9\times 10^8 \times 6\times 10^{-6}}{0.2}$ $V = 2.7 \times 10^5 \text{ V}$ (ii) Since electric field inside the hollow sphere is zero, hence V is same as that of the surface and remains constant throughout the volume. $V = 2.7 \times 10^5 \text{ V}$ OR (b) (i) Expression for electric field at a point lying (i) inside (ii) outside 2 (ii) Explanation 2 (i) Field inside the shell Gaussian surface Gaussian surface Gaussian surface Surface charge density of P The Flux through the Gaussian surface is $= E \times 4\pi R^2$ In this case Gaussian surface encloses no charge. Hence $E \times 4\pi R^2 = 0$ $E = 0$ (Note: Award full credit of this part if a student writes directly E=0,	C	$=\frac{1}{V}=\frac{1}{d}$		
$V = \frac{1}{4\pi\kappa_0} \frac{q}{r}$ (i) At the surface $V = \frac{1}{4\pi\kappa_0} \frac{q}{r} = \frac{9\times 10^9 \times 6\times 10^{-6}}{0.2}$ $V = 2.7 \times 10^5 \text{ V}$ (ii) Since electric field inside the hollow sphere is zero, hence V is same as that of the surface and remains constant throughout the volume. $V = 2.7 \times 10^5 \text{ V}$ OR (b) (i) Expression for electric field at a point lying (i) inside (ii) outside (ii) explanation (i) Field inside the shell Gaussian surface Surface charge density σ P The Flux through the Gaussian surface is $= E \times 4\pi R^2$ In this case Gaussian surface encloses no charge. Hence $E \times 4\pi R^2 = 0$ $E = 0$ (Note: Award full credit of this part if a student writes directly E=0,		v u		
$V = \frac{1}{4\pi\kappa_0} \frac{q}{r}$ (i) At the surface $V = \frac{1}{4\pi\kappa_0} \frac{q}{r} = \frac{9\times 10^9 \times 6\times 10^{-6}}{0.2}$ $V = 2.7 \times 10^5 \text{ V}$ (ii) Since electric field inside the hollow sphere is zero, hence V is same as that of the surface and remains constant throughout the volume. $V = 2.7 \times 10^5 \text{ V}$ OR (b) (i) Expression for electric field at a point lying (i) inside (ii) outside (ii) explanation (i) Field inside the shell Gaussian surface Surface charge density σ P The Flux through the Gaussian surface is $= E \times 4\pi R^2$ In this case Gaussian surface encloses no charge. Hence $E \times 4\pi R^2 = 0$ $E = 0$ (Note: Award full credit of this part if a student writes directly E=0,	(::)	Direction actuated day to a major drawn		
(i) At the surface $V = \frac{1}{4\pi\epsilon_0} \frac{q}{r} = \frac{9 \times 10^9 \times 6 \times 10^{-6}}{0.2}$ $V = 2.7 \times 10^5 \text{ V}$ (ii) Since electric field inside the hollow sphere is zero, hence V is same as that of the surface and remains constant throughout the volume. $V = 2.7 \times 10^5 \text{ V}$ OR (b) (i) Expression for electric field at a point lying (i) inside (ii) outside (ii) Explanation 2 (i) Field inside the shell Gaussian surface Surface charge density σ P The Flux through the Gaussian surface is $E \times 4\pi R^2$ In this case Gaussian surface encloses no charge. Hence $E \times 4\pi R^2 = 0$ $E = 0$ (Note: Award full credit of this part if a student writes directly E=0,				
(i) At the surface $V = \frac{1}{4\pi\epsilon_0} \frac{q}{r} = \frac{9 \times 10^9 \times 6 \times 10^{-6}}{0.2}$ $V = 2.7 \times 10^5 \text{ V}$ (ii) Since electric field inside the hollow sphere is zero, hence V is same as that of the surface and remains constant throughout the volume. $V = 2.7 \times 10^5 \text{ V}$ OR (b) (i) Expression for electric field at a point lying (i) inside (ii) outside (ii) Explanation 2 (i) Field inside the shell Gaussian surface Surface charge density σ P The Flux through the Gaussian surface is $E \times 4\pi R^2$ In this case Gaussian surface encloses no charge. Hence $E \times 4\pi R^2 = 0$ $E = 0$ (Note: Award full credit of this part if a student writes directly E=0,	V=	$=\frac{1}{1}\frac{q}{q}$	1/2	
$V = \frac{1}{4\pi v_0} \frac{q}{r} = \frac{9\times10^9\times6\times10^{-6}}{0.2}$ $V = 2.7 \times 10^5 \text{ V}$ (ii) Since electric field inside the hollow sphere is zero, hence V is same as that of the surface and remains constant throughout the volume. $V = 2.7 \times 10^5 \text{ V}$ OR (b) (i) Expression for electric field at a point lying (ii) inside (ii) outside (ii) Explanation 2 (i) Field inside the shell Gaussian surface Surface charge density σ Field inside the Gaussian surface is $E \times 4\pi R^2$ In this case Gaussian surface encloses no charge. Hence $E \times 4\pi R^2 = 0$ $E = 0$ (Note: Award full credit of this part if a student writes directly E=0,		$4\pi\epsilon_0 r$	'-	
$V = \frac{1}{4\pi v_0} \frac{q}{r} = \frac{9\times10^9\times6\times10^{-6}}{0.2}$ $V = 2.7 \times 10^5 \text{ V}$ (ii) Since electric field inside the hollow sphere is zero, hence V is same as that of the surface and remains constant throughout the volume. $V = 2.7 \times 10^5 \text{ V}$ OR (b) (i) Expression for electric field at a point lying (ii) inside (ii) outside (ii) Explanation 2 (i) Field inside the shell Gaussian surface Surface charge density σ Field inside the Gaussian surface is $E \times 4\pi R^2$ In this case Gaussian surface encloses no charge. Hence $E \times 4\pi R^2 = 0$ $E = 0$ (Note: Award full credit of this part if a student writes directly E=0,				
$V = \frac{1}{4\pi v_0} \frac{q}{r} = \frac{9\times10^9\times6\times10^{-6}}{0.2}$ $V = 2.7 \times 10^5 \text{ V}$ (ii) Since electric field inside the hollow sphere is zero, hence V is same as that of the surface and remains constant throughout the volume. $V = 2.7 \times 10^5 \text{ V}$ OR (b) (i) Expression for electric field at a point lying (ii) inside (ii) outside (ii) Explanation 2 (i) Field inside the shell Gaussian surface Surface charge density σ Field inside the Gaussian surface is $E \times 4\pi R^2$ In this case Gaussian surface encloses no charge. Hence $E \times 4\pi R^2 = 0$ $E = 0$ (Note: Award full credit of this part if a student writes directly E=0,	(i) /	At the surface		
(ii) Since electric field inside the hollow sphere is zero, hence V is same as that of the surface and remains constant throughout the volume. $V = 2.7 \times 10^5 \text{ V}$ OR (b) (i) Expression for electric field at a point lying (i) inside (ii) outside 2 (ii) Explanation 2 (i) Field inside the shell Gaussian surface Surface charge density σ The Flux through the Gaussian surface is $= E \times 4\pi R^2$ In this case Gaussian surface encloses no charge. Hence $E \times 4\pi R^2 = 0$ $E = 0$ (Note: Award full credit of this part if a student writes directly $E = 0$,				
(ii) Since electric field inside the hollow sphere is zero, hence V is same as that of the surface and remains constant throughout the volume. $V = 2.7 \times 10^5 \text{ V}$ OR (b) (i) Expression for electric field at a point lying (i) inside (ii) outside 2 (ii) Explanation 2 (i) Field inside the shell Gaussian surface Surface charge density σ The Flux through the Gaussian surface is $= E \times 4\pi R^2$ In this case Gaussian surface encloses no charge. Hence $E \times 4\pi R^2 = 0$ $E = 0$ (Note: Award full credit of this part if a student writes directly $E = 0$,	V=	$=\frac{1}{4\pi c}\frac{q}{m}=\frac{2\pi c}{0.2}$	1/2	
(ii) Since electric field inside the hollow sphere is zero, hence V is same as that of the surface and remains constant throughout the volume. $V = 2.7 \times 10^5 \text{ V}$ OR (b) (i) Expression for electric field at a point lying (i) inside (ii) outside 2 (ii) Explanation 2 (i) Field inside the shell Gaussian surface Surface charge density σ The Flux through the Gaussian surface is $= E \times 4\pi R^2$ In this case Gaussian surface encloses no charge. Hence $E \times 4\pi R^2 = 0$ $E = 0$ (Note: Award full credit of this part if a student writes directly $E = 0$,		$4\pi\epsilon_0 r$ 0.2	/ 2	
(ii) Since electric field inside the hollow sphere is zero, hence V is same as that of the surface and remains constant throughout the volume. $V = 2.7 \times 10^5 \text{ V}$ OR (b) (i) Expression for electric field at a point lying (i) inside (ii) outside 2 (ii) Explanation 2 (i) Field inside the shell Gaussian surface Surface charge density σ Field inside the Gaussian surface is $= E \times 4\pi R^2$ In this case Gaussian surface encloses no charge. Hence $E \times 4\pi R^2 = 0$ $E = 0$ (Note: Award full credit of this part if a student writes directly $E = 0$,				
as that of the surface and remains constant throughout the volume. $V=2.7\times 10^5 \text{ V}$ OR (b) (i) Expression for electric field at a point lying (i) inside (ii) outside 2 (ii) Explanation 2 2 (i) Field inside the shell Gaussian surface Surface charge density σ Field inside the Gaussian surface is $E=E\times 4\pi R^2$ In this case Gaussian surface encloses no charge. Hence $E\times 4\pi R^2=0$ $E=0$ (Note: Award full credit of this part if a student writes directly E=0,	V	$= 2.7 \times 10^5 \text{ V}$	1/2	
as that of the surface and remains constant throughout the volume. $V=2.7\times 10^5 \mathrm{V}$ OR (b) (i) Expression for electric field at a point lying (i) inside (ii) outside 2 (ii) Explanation 2 (i) Field inside the shell Gaussian surface Surface charge density σ The Flux through the Gaussian surface is $= \mathrm{E} \times 4\pi\mathrm{R}^2$ In this case Gaussian surface encloses no charge. Hence $E \times 4\pi\mathrm{R}^2 = 0$ E $= 0$ (Note: Award full credit of this part if a student writes directly E=0,				
as that of the surface and remains constant throughout the volume. $V=2.7\times 10^5 \text{ V}$ OR (b) (i) Expression for electric field at a point lying (i) inside (ii) outside 2 (ii) Explanation 2 (i) Field inside the shell Gaussian surface Surface charge density σ The Flux through the Gaussian surface is $= E \times 4\pi R^2$ In this case Gaussian surface encloses no charge. Hence $E \times 4\pi R^2 = 0$ $E = 0$ (Note: Award full credit of this part if a student writes directly E=0,	(ii)	Since electric field incide the hollow enhancing zero, honce V is some		
The Flux through the Gaussian surface is $= E \times 4\pi R^2$ In this case Gaussian surface encloses no charge. Hence $E \times 4\pi R^2 = 0$ $E = 0$ (Note: Award full credit of this part if a student writes directly $E = 0$,			1/	
(b) (i) Expression for electric field at a point lying (i) inside (ii) outside 2 (ii) Explanation 2 2 (i) Field inside the shell Gaussian surface Surface charge density σ P The Flux through the Gaussian surface is $= E \times 4\pi R^2$ In this case Gaussian surface encloses no charge. Hence $E \times 4\pi R^2 = 0$ E = 0 (Note: Award full credit of this part if a student writes directly E=0,	as th		1/2	
(b) (i) Expression for electric field at a point lying (i) inside (ii) outside (ii) Explanation 2 (i) Field inside the shell Gaussian surface Surface charge density σ The Flux through the Gaussian surface is $= E \times 4\pi R^2$ In this case Gaussian surface encloses no charge. Hence $E \times 4\pi R^2 = 0$ $E = 0$ (Note: Award full credit of this part if a student writes directly $E = 0$,		$V = 2.7 \times 10^5 \text{ V}$		
(b) (i) Expression for electric field at a point lying (i) inside 1 2 (ii) outside 2 2 (ii) Explanation 2 2 (i) Field inside the shell Gaussian surface Surface charge density σ The Flux through the Gaussian surface is $= E \times 4\pi R^2$ In this case Gaussian surface encloses no charge. Hence $E \times 4\pi R^2 = 0$ $E = 0$ (Note: Award full credit of this part if a student writes directly $E = 0$,				
(i) inside (ii) outside 2 (ii) Explanation 2 (i) Field inside the shell Gaussian surface Surface charge density σ The Flux through the Gaussian surface is $= E \times 4\pi R^2$ In this case Gaussian surface encloses no charge. Hence $E \times 4\pi R^2 = 0$ $E = 0$ (Note: Award full credit of this part if a student writes directly E=0,	(3.)	UK		
(i) inside (ii) outside 2 (ii) Explanation 2 2 (ii) Explanation 2 2 (i) Field inside the shell Gaussian surface Surface charge density σ	(b)	(i) Expression for electric field at a point lying		
(ii) outside 2 (ii) Explanation 2 (i) Field inside the shell Gaussian surface Surface charge density σ The Flux through the Gaussian surface is $= E \times 4\pi R^2$ In this case Gaussian surface encloses no charge. Hence $E \times 4\pi R^2 = 0$ $E = 0$ (Note: Award full credit of this part if a student writes directly E=0,				
(ii) Explanation 2 (i) Field inside the shell Gaussian surface Surface charge density σ The Flux through the Gaussian surface is $= E \times 4\pi R^2$ In this case Gaussian surface encloses no charge. Hence $E \times 4\pi R^2 = 0$ $E = 0$ (Note: Award full credit of this part if a student writes directly E=0,				
(i) Field inside the shell Gaussian surface Surface charge density σ The Flux through the Gaussian surface is $= E \times 4\pi R^2$ In this case Gaussian surface encloses no charge. Hence $E \times 4\pi R^2 = 0$ $E = 0$ (Note: Award full credit of this part if a student writes directly E=0,		` '		
(i) Field inside the shell Gaussian surface Surface charge density σ The Flux through the Gaussian surface is $= E \times 4\pi R^2$ In this case Gaussian surface encloses no charge. Hence $E \times 4\pi R^2 = 0$ $E = 0$ (Note: Award full credit of this part if a student writes directly E=0,		(ii) Explanation 2		
The Flux through the Gaussian surface is $= E \times 4\pi R^2$ In this case Gaussian surface encloses no charge. Hence $E \times 4\pi R^2 = 0$ E = 0 1/2 (Note: Award full credit of this part if a student writes directly E=0,				
The Flux through the Gaussian surface is $= E \times 4\pi R^2$ In this case Gaussian surface encloses no charge. Hence $E \times 4\pi R^2 = 0$ E = 0 1/2 (Note: Award full credit of this part if a student writes directly E=0,		(i) Field inside the shell		
The Flux through the Gaussian surface is $= E \times 4\pi R^2$ In this case Gaussian surface encloses no charge. Hence $E \times 4\pi R^2 = 0$ E =0 1/2 (Note: Award full credit of this part if a student writes directly E=0,		··		
The Flux through the Gaussian surface is $= E \times 4\pi R^2$ In this case Gaussian surface encloses no charge. Hence $E \times 4\pi R^2 = 0$ $E = 0$ 1/2 (Note: Award full credit of this part if a student writes directly E=0,		Gaussian surface		
The Flux through the Gaussian surface is $= E \times 4\pi R^2$ In this case Gaussian surface encloses no charge. Hence $E \times 4\pi R^2 = 0$ E = 0 (Note: Award full credit of this part if a student writes directly E=0,		Surface charge		
The Flux through the Gaussian surface is $= E \times 4\pi R^2$ In this case Gaussian surface encloses no charge. Hence $E \times 4\pi R^2 = 0$ E = 0 1/2 (Note: Award full credit of this part if a student writes directly E=0,		density o P		
$= E \times 4\pi R^{2}$ In this case Gaussian surface encloses no charge. Hence $E \times 4\pi R^{2} = 0$ $E = 0$ (Note: Award full credit of this part if a student writes directly E=0,				
$= E \times 4\pi R^{2}$ In this case Gaussian surface encloses no charge. Hence $E \times 4\pi R^{2} = 0$ $E = 0$ (Note: Award full credit of this part if a student writes directly E=0,		/ R /		
$= E \times 4\pi R^{2}$ In this case Gaussian surface encloses no charge. Hence $E \times 4\pi R^{2} = 0$ $E = 0$ (Note: Award full credit of this part if a student writes directly E=0,				
$= E \times 4\pi R^{2}$ In this case Gaussian surface encloses no charge. Hence $E \times 4\pi R^{2} = 0$ $E = 0$ (Note: Award full credit of this part if a student writes directly E=0,				
$= E \times 4\pi R^{2}$ In this case Gaussian surface encloses no charge. Hence $E \times 4\pi R^{2} = 0$ $E = 0$ (Note: Award full credit of this part if a student writes directly E=0,				
$= E \times 4\pi R^{2}$ In this case Gaussian surface encloses no charge. Hence $E \times 4\pi R^{2} = 0$ $E = 0$ (Note: Award full credit of this part if a student writes directly E=0,				
$= E \times 4\pi R^{2}$ In this case Gaussian surface encloses no charge. Hence $E \times 4\pi R^{2} = 0$ $E = 0$ (Note: Award full credit of this part if a student writes directly E=0,		" and the second of the second		
$= E \times 4\pi R^{2}$ In this case Gaussian surface encloses no charge. Hence $E \times 4\pi R^{2} = 0$ $E = 0$ (Note: Award full credit of this part if a student writes directly E=0,				
$= E \times 4\pi R^{2}$ In this case Gaussian surface encloses no charge. Hence $E \times 4\pi R^{2} = 0$ $E = 0$ (Note: Award full credit of this part if a student writes directly E=0,	The	Flux through the Gaussian surface is		
In this case Gaussian surface encloses no charge. Hence $E \times 4\pi R^2 = 0$ $E = 0$ (Note: Award full credit of this part if a student writes directly E=0,			1/2	
Hence $E \times 4\pi R^2 = 0$ E = 0 (Note: Award full credit of this part if a student writes directly E=0,				
E =0 (Note: Award full credit of this part if a student writes directly E=0,				
(Note: Award full credit of this part if a student writes directly E=0,	Hen	$ce E \times 4\pi R^2 = 0$	1.4	
(Note: Award full credit of this part if a student writes directly E=0,		E = 0	1/2	
	/=-		1	
mentioning as there is no charge enclosed by Gaussian surface)	(No			
	mer			
	mei			

55/3/1 Page 10 of 15

(ii) Field outside the shell-		
Surface charge Gaussian surface density o		
R _O P _P	1/2	
Electric flux through Gaussian surface $E \times 4\pi r^2 = \frac{(\sigma 4\pi R^2)}{\varepsilon_0}$	1/2	
Charge enclosed by the Gaussian surface $E \times 4\pi r^2 = \frac{(\sigma 4\pi R^2)}{\varepsilon_0}$ Using Gauss's law: $\int \vec{E} \cdot \vec{ds} = \frac{Q}{\varepsilon_0}$	1/2	
$E \times 4\pi r^2 = \frac{(\sigma 4\pi R^2)}{\varepsilon_0}$ $E = \frac{\sigma}{\varepsilon_0} \frac{R^2}{r^2} = \frac{q}{4\pi\varepsilon_0 r^2}$	1/2	
(ii) For conducting sheet, Electric field due to a conducting sheet $E_c = \frac{\sigma}{\varepsilon_0}$ Surface	1/2	
z charge density σ		
For non-conducting sheet $E_{nc} = \frac{\sigma}{2\varepsilon_0}$	1/2	
Since surface charge density is same. $2E_{nc} = E_c$	1/2 1/2	5
(a) (i)(1) Meaning of current sensitivity, mentioning factors 2 (2) Finding the required resistance 1½ (ii) Finding the induced current 1½		
(i) (1). Current sensitivity of galvanometer is defined as the deflection per unit current. Alternatively , $\frac{\phi}{I} = \frac{NBA}{K}$	1	
Factors Number of turns in coil, Magnetic field intensity, Area of coil, Torsional Constant (Any two)	1/2+1/2	

55/3/1 Page 11 of 15

(2) $R = \frac{V}{I} - G$ for (0-V) Range $R_1 = \frac{V}{2I} - G$ for $(0 - \frac{V}{2})$ Range	1/2	
$R_1 = \frac{V}{2I} - G \qquad \text{for } (0 - \frac{V}{2}) \text{ Range}$	1/2	
$\frac{V}{I} = R + G$		
$R_1 = \left(\frac{R+G}{2}\right) - G$		
$R_1 = \frac{\tilde{R} - \tilde{G}}{2}$	1/2	
(ii) $\phi = (2.0t^3 + 5.0t^2 + 6.0t)$ mWb		
$ \varepsilon = \frac{d\phi}{dt} = 50 \times 10^{-3} \text{ V}$	1/2	
$I = \frac{ \varepsilon }{R}$	1/2	
$I = \frac{\frac{K}{50 \times 10^{-3}}}{5} A = 10 \text{ mA}$	1/2	
OR		
(i) Obtaining the expression of emf induced 3		
(ii) Calculation of mutual inductance 2		
Coil Axle		
N S	1	
Slip 000000		
rings Alternating emf		
Carbon brushes		
(i) The flux at any instant t is		
$\phi = NBA \cos\theta = NBA \cos\omega t$	1/	
	1/2	
From Faraday's law		
$arepsilon = -rac{d\phi_B}{dt}$	1/2	
$=-NBA\frac{d}{dt}(\cos\omega t)$	1/2	
$=-NBA\frac{1}{dt}$ (coswi)		
$\varepsilon = -NBA \omega \sin \omega t$	1/2	
$u_{\tau}\pi r^{2} = 4\pi \times 10^{-7} \times \pi r^{2}$		
(ii) $M = \frac{\mu_0 \pi r_1^2}{2r_2} = \frac{4\pi \times 10^{-7} \times \pi r_1^2}{2r_2}$	1/2+1/2	
$2 \times 10 \times 10^{-7} \times (10^{-2})^2$	4./	
$=\frac{2\times10\times10^{-7}\times\left(10^{-2}\right)^2}{100\times10^{-7}}$	1/2	
$= 2 \times 10^{-10} \text{ H}$	1/2	_
		5

55/3/1 Page 12 of 15

	1	1
$\frac{1}{\sqrt{2}}\frac{\cos\theta}{\sin\theta} = 1$		
$\sqrt{2} \sin \theta$		
_ 1		
$tan \theta = \frac{1}{\sqrt{2}}$	1/2	
From the triangle GEF		
$\sin \theta = \frac{1}{\sqrt{5}}$		
$\sqrt{3}$	1/2	
$\sin \theta = \frac{1}{\sqrt{3}}$ $\mu = \sqrt{\frac{3}{2}}$		
OR		
OR		
(b) (i) Expression for resultant intensity 3		
(ii) Ratio of intensities 2		
(i) $y_1 = a \cos \omega t$		
$y_1 = a \cos \omega t$ $y_2 = a \cos(\omega t + \phi)$		
According to the principle of superposition		
$y = y_1 + y_2$	1/2	
$y = a \cos \omega t + a \cos(\omega t + \phi)$, 2	
$y = a \cos \omega t + a \cos \omega t \cos \phi - a \sin \omega t \sin \phi$		
$y = a\cos\omega t (1 + \cos\phi) - a\sin\phi\sin\omega t$	1/2	
Let,		
$a(1+\cos\phi) = A\cos\theta \qquad (i)$		
$a \sin \phi = A \sin \theta$ (ii)	1/2	
Squaring and adding equation (i) and (ii)		
$A^{2} = a^{2}(1 + \cos\phi)^{2} + a^{2}\sin^{2}\phi$		
$= a^2(1 + \cos^2\phi + 2\cos\phi) + a^2\sin^2\phi$		
$= 2a^2(1 + \cos\phi)$ $= 2a^2(1 + \cos\phi)$	1/2	
$= 4a^2 \cos^2 \phi / 2$		
$I\alpha A^2$	1/2	
$I = kA^2$		
where k is constant		
$I = 4ka^2 \cos^2 \phi / 2$	1/2	
[Award full credit for this part for any other alternative methods]		
$\phi_1 = \frac{2\pi}{\lambda} \times \frac{\lambda}{6} = \pi/3$	1/4	
(11) $\gamma_1 \qquad \lambda \qquad 6 \qquad \lambda \qquad 6$	1/2	
$I_1 = 4I_0 \cos^2 \phi / 2$		
$-4L\cos^2(-10)$		
$= 4I_0 \cos^2(\pi/6)$ $I_1 = 3I_0$	1/2	
$I_1 - 3I_0$,-	
$\lambda = 2\pi \times \lambda = 16$		
$\phi_2 = \frac{2\pi}{\lambda} \times \frac{\lambda}{12} = \pi/6$		
$I_2 = 4I_0 \cos^2(\pi/12)$	1/2	
$I_2 = 4I_0 \cos^2 15^0$		
$\frac{I_1}{I_2} = \frac{3}{4\cos^2 15^0}$	1/2	5
2		

55/3/1 Page 14 of 15

55/3/1 Page 15 of 15

Marking Scheme Strictly Confidential (For Internal and Restricted use only) Senior School Certificate Examination, 2024 SUBJECT PHYSICS (CODE 55/3/2)

Ceneral	Instructions: -	
General	msu ucuons	

1	You are aware that evaluation is the most important process in the actual and correct assessment of the candidates. A small mistake in evaluation may lead to serious problems which may affect the future of the candidates, education system and teaching profession. To avoid mistakes, it is requested that before starting evaluation, you must read and understand the spot evaluation guidelines carefully.
	"Evaluation policy is a confidential policy as it is related to the confidentiality of the
2	examinations conducted, Evaluation done and several other aspects. Its' leakage to public in
	any manner could lead to derailment of the examination system and affect the life and future
	of millions of candidates. Sharing this policy/document to anyone, publishing in any
	magazine and printing in News Paper/Website etc may invite action under various rules of the Board and IPC."
	Evaluation is to be done as per instructions provided in the Marking Scheme. It should not be done
3	according to one's own interpretation or any other consideration. Marking Scheme should be
	strictly adhered to and religiously followed. However, while evaluating, answers which are
	based on latest information or knowledge and/or are innovative, they may be assessed for
	their correctness otherwise and due marks be awarded to them. In class-X, while evaluating
	two competency-based questions, please try to understand given answer and even if reply is
	not from marking scheme but correct competency is enumerated by the candidate, due
	marks should be awarded.
	The Marking scheme carries only suggested value points for the answers. These are in the nature
4	of Guidelines only and do not constitute the complete answer. The students can have their own
	expression and if the expression is correct, the due marks should be awarded accordingly.
5	The Head-Examiner must go through the first five answer books evaluated by each evaluator on
3	the first day, to ensure that evaluation has been carried out as per the instructions given in the
	Marking Scheme. If there is any variation, the same should be zero after delibration and
	discussion. The remaining answer books meant for evaluation shall be given only after ensuring
	that there is no significant variation in the marking of individual evaluators.
	Evaluators will mark($\sqrt{\ }$) wherever answer is correct. For wrong answer CROSS 'X" be marked.
6	Evaluators will not put right () while evaluating which gives an impression that answer is correct
	and no marks are awarded. This is most common mistake which evaluators are committing.
	If a question has parts, please award marks on the right-hand side for each part. Marks awarded for
7	different parts of the question should then be totaled up and written in the left-hand margin and
	encircled. This may be followed strictly.
	If a question does not have any parts, marks must be awarded in the left-hand margin and
8	encircled. This may also be followed strictly.

55/3/2 Page 1 of 15

	If a student has attempted an extra spection, anomaly of the spection decoming mean modes should
9	If a student has attempted an extra question, answer of the question deserving more marks should be retained and the other answer scored out with a note "Extra Question".
10	No marks to be deducted for the cumulative effect of an error. It should be penalized only once.
11	A full scale of marks 0-70 has to be used. Please do not hesitate to award full marks if the answer deserves it.
12	Every examiner has to necessarily do evaluation work for full working hours i.e., 8 hours every day and evaluate 20 answer books per day in main subjects and 25 answer books per day in other subjects (Details are given in Spot Guidelines). This is in view of the reduced syllabus and number of questions in question paper.
13	Ensure that you do not make the following common types of errors committed by the Examiner in the past:-
	 Leaving answer or part thereof unassessed in an answer book. Giving more marks for an answer than assigned to it. Wrong totaling of marks awarded on an answer. Wrong transfer of marks from the inside pages of the answer book to the title page. Wrong question wise totaling on the title page. Wrong totaling of marks of the two columns on the title page. Wrong grand total. Marks in words and figures not tallying/not same. Wrong transfer of marks from the answer book to online award list. Answers marked as correct, but marks not awarded. (Ensure that the right tick mark is correctly and clearly indicated. It should merely be a line. Same is with the X for incorrect answer.) Half or a part of answer marked correct and the rest as wrong, but no marks awarded. While evaluating the answer books if the answer is found to be totally incorrect, it should be
14	marked as cross (X) and awarded zero (0)Marks.
15	Any unassessed portion, non-carrying over of marks to the title page, or totaling error detected by the candidate shall damage the prestige of all the personnel engaged in the evaluation work as also of the Board. Hence, in order to uphold the prestige of all concerned, it is again reiterated that the instructions be followed meticulously and judiciously.
16	The Examiners should acquaint themselves with the guidelines given in the "Guidelines for Spot Evaluation" before starting the actual evaluation.
17	Every Examiner shall also ensure that all the answers are evaluated, marks carried over to the title page, correctly totaled and written in figures and words.
18	The candidates are entitled to obtain photocopy of the Answer Book on request on payment of the prescribed processing fee. All Examiners/Additional Head Examiners/Head Examiners are once again reminded that they must ensure that evaluation is carried out strictly as per value points for each answer as given in the Marking Scheme.

55/3/2 Page 2 of 15

	MARKING SCHEME: PHYSICS (042)	+	
Q.NO.	CODE: 55/3/2 VALUE POINT/ EXPECTED ANSWERS	MARKS	TOTAL MARKS
	SECTION A		
1.		1	1
2.	$\frac{\text{(C)} - q \text{ and } Q + q}{\text{(B)} 1.6 \times 10^{-18} \text{ J}}$	1	1
3.	(C) $-(0.24 \text{nT}) \hat{k}$	1	1
4.	(D) Repel each other with a force $\frac{\mu_o I^2}{2\pi a}$, per unit length	1	1
5.	(B) 0.3 MB	1	1
6.	(D) 0.1 C	1	1
7.	(B) <i>l</i> is decreased and A is increased	1	1
8.	(C) X- rays	1	1
9.	(B) 2	1	1
10.	(C) $\phi_3 > \phi_2 > \phi_1$	1	1
11.	(B) decreases by 87.5%	1	1
12.	(B) 0.05 eV	1	1
13.	(D) Assertion (A) is false and Reason (R) is also false	1	1
14.	(C) Assertion (A) is true but Reason (R) is false	1	1
15.	(A) Both Assertion (A) and Reason (R) are true and Reason (R) is the	1	1
1.0	correct explanation of the Assertion(A)	1	1
16.	(A) Both Assertion (A) and Reason (R) are true and Reason (R) is the	1	1
	correct explanation of the Assertion(A) SECTION B		
17.	SECTION B		
17.	(a) Meaning of relaxation time Derivation of R 1/2 1 1/2		
	Average time between two successive collisions of electron in presence of electric field. Drift velocity of an electron eE	1/2	
	$v_d = \frac{eE}{m}\tau$ (i) Current flowing through a conductor of length l and area of cross section A $I = neAv_d$ (ii)	1/2	
	$I = \frac{ne^2 AE\tau}{m} = \frac{ne^2 A\tau V}{ml}$ $R = V - ml$	1/2	
	$R = \frac{V}{I} = \frac{ml}{ne^2 \tau A}$ OR	1/2	2
	(b) Circuit diagram of Wheatstone bridge Obtaining the condition when no current flows through galvanometer 1½		

55/3/2 Page 3 of 15

The River of the Property of t	
By applying Kirchoff's loop rule to closed loops ADBA and CBDC $ \begin{array}{c} -I_1R_1+0+I_2R_2=0 &(i) & [I_g=0] \\ I_2R_4+0-I_1R_3=0 &(ii) \\ \end{array} $ From eq (i)- $ \begin{array}{c} I_1 = \frac{R_2}{R} \end{array} $	
From eq (ii)- $ \frac{I_1}{I_2} = \frac{R_4}{R_3} $ Hence, $ R = R $	
$\frac{R_2}{R_1} = \frac{R_4}{R_3}$	2
Finding the focal length of objective lens 2 Magnifying power = 24, Distance between lenses =150 cm	
$\frac{f_o}{f_e} = 24$	
$f_o + f_e = 150 \mathrm{cm}$	
$f_e = 6 \mathrm{cm}$	
$f_o = 144 \mathrm{cm}$	2
Differences between interference and diffraction of light 1+1	
Interference Diffraction	
(i) In interference pattern width of width of each maxima is same. (i) In diffraction pattern width of central maxima is twice the width of secondary maxima. 1+1	
(ii) In interference pattern intensity of all maxima is same. (ii) In diffraction pattern intensity of maxima goes on decreasing as we	
move away from central maxima.	,
[Award full credit if students write any other two differences]	2

55/3/2 Page 4 of 15

		T	1
20.	(i) Calculation of Kinetic energy (in eV) 1½		
	(ii) Stopping potential ½		
	Using Einstein Photoelectric equation	1/	
	$\frac{hc}{\lambda} = K.E_{\text{max}} + \phi_0$	1/2	
	$K.E_{\text{max}} = \frac{hc}{\lambda} - \phi_0$		
	70		
	_ 1240eVnm _ 2 14 eV	1/2	
	$=\frac{1240eVnm}{500nm}-2.14eV$	72	
	$K.E_{\text{max}} = 0.34 eV$	1/2	
		/2	
	$K.E_{ m max} = eV_0$		
		1/2	2
	$\therefore V_0 = 0.34V$, =	_
21.			
	Calculation of concentration of holes and electrons 2		
	$n_e n_{_h} = n_i^2$	1/2	
	$n_h \approx 5 \times 10^{22} / m^3$		
	$n_e = \frac{n_i^2}{n_h}$		
	$n_e - \frac{n_e}{n_h}$		
	"		
	$n_e = \frac{(1.5 \times 10^{16})^2}{5 \times 10^{22}}$	1/2	
		4.	
	$n_e = 4.5 \times 10^9 / m^3$	1/2	
	$n_h > n_e$, it is a p-type crystal	1/2	2
	SECTION C		
22.	Calculation of		
	(a) emf of battery ½		
	(c) external resistance (R)		
	(c) V. F. 10 V/When beev V is open and I. 0. A)	1/	
	(a) $V = E = 10 \text{ V(When key K is open and I=0 A)}$	1/2	
	(b) V=E-Ir (When key K is closed and I=2 A)	1/2	
	6=10-2r	1/2	
	$r = 2\Omega$	1/2	
	1 222	/2	
	(c) E=I(r+R)	1/2	
	10=2(2+R)	/2	
	$R=3 \Omega$	1/2	3
23.		,-	
	Derivation of torque in vector form 3		
	Derivation of torque in vector form		

	B I C S	1	
	\mathbf{B}		
	Forces on the arms BC and DA are, equal opposite and collinear. Hence they will cancel each other. The forces on arms AB and CD are $\overrightarrow{F_1}$ and $\overrightarrow{F_2}$, equal but not collinear. The magnitude of the torque on the loop is	1/2	
	$\tau = F_1 \frac{a}{2} \sin \theta + F_2 \frac{a}{2} \sin \theta$ $= IabB \sin \theta$	1/2	
	$= mB \sin \theta \qquad (m = IA)$ $\vec{\tau} = \vec{m} \times \vec{B}$	1/ ₂ 1/ ₂	3
24.	Differences between reactance and impedance 1 Showing Ideal inductor in an ac circuit does not dissipate any power 2		
	Reactance - It is the measure of opposition to flow of current in ac circuit comprising Inductor or Capacitor.	1/2	
	Impedance - It is the measure of opposition to flow of current in ac circuit comprising Resistor, Capacitor and Inductor. $\varepsilon = \varepsilon_0 \sin \omega t$	1/2	
	$I = I_0 \sin(\omega t - \frac{\pi}{2}) = -I_0 \cos \omega t$ $P = \varepsilon I$ $= -\varepsilon_0 I_0 \sin \omega t \cos \omega t$	1/2	
	$= -\frac{\varepsilon_0 I_0}{2} 2 \sin \omega t \cos \omega t$ $P = \frac{\varepsilon_0 I_0}{2} \sin 2\omega t$	1/2	

	T D.44		
	$\langle P \rangle = \frac{\int P dt}{\int dt}$	1/2	
	$\int_{0}^{t} dt$		
	$\int_{0}^{T} \mathcal{E}_{0} I_{0} \sin 2 \omega t dt$		
	$\langle P \rangle = \frac{\int_{0}^{T} \frac{\varepsilon_{0} I_{0}}{2} \sin 2\omega t dt}{T}$ $= \frac{\varepsilon_{0} I_{0}}{2T} \int_{0}^{T} \sin 2\omega t dt$		
	$\mathcal{E}_0 I_0 \overset{T}{f}$. 2		
	$=\frac{3}{2T}\int_{0}^{3}\sin 2\omega t dt$		
	$= -\frac{\varepsilon_0 I_0}{2T} (\cos \omega t)_0^T = \frac{\varepsilon_0 I_0}{2T} (1 - 1)$		
	$\langle P \rangle = 0$	1/2	
	Hence average power associated with inductor is zero.		
	Alternatively		
	$P = \varepsilon_{ms} I_{ms} \cos \phi$ For inductive circuit	1	
	$\phi = \pi / 2$		
	$P = \varepsilon_{rms} I_{rms} \cos \frac{\pi}{2}$	1/2	
	P=0	1/2	3
25.	(a) Finding the wavelength and frequency 1+1		
	(b) Finding the amplitude of magnetic field (c) Writing expression for magnetic field 1/2		
	(c) Witting expression for magnetic field 72		
	(a) $k = \frac{2\pi}{3}$	1/2	
	$\lambda = \frac{2\pi}{K} = \frac{4\pi}{3} \mathrm{m} = 4.18 \mathrm{m}$		
	$\omega = \frac{2\pi v}{K} - \frac{3}{3} \text{ in } = 4.18 \text{ in}$ $\omega = 2\pi v$	1/2	
	$v = \frac{\omega}{2\pi} = \frac{4.5 \times 10^8}{2\pi} \text{Hz}$	1/2	
	$v = \frac{9}{4\pi} \times 10^8 \mathrm{Hz}$	1/2	
	$v = 7.16 \times 10^{-1} \text{ Hz}$		
	$(b) B_0 = \frac{E_0}{c}$		
	$B_0 = \frac{6.3}{3 \times 10^8} = 2.1 \times 10^{-8} \text{T}$	1/2	
	$B_0 = 3 \times 10^8 = 2.1 \times 10^{-1}$		
	(c) $\vec{B} = 2.1 \times 10^{-8} [(\cos 1.5 \text{ rad/m}) \text{ y} + (4.5 \times 10^8 \text{ rad/s}) \text{ t}] \hat{k} \text{ T}$	1/2	
			3

Explanation of origin of spectral lines of hydrogen atom Energy level diagram showing various spectral series of hydrogen atom When an electron makes a transition from higher energy level to a lower energy orbit, a photon is emitted having energy equal to energy difference between these two orbits. Total energy, E (eV)		
Unbound (ionised) atom $ \begin{array}{c} $	2	
[Do not deduct marks for not showing transition in diagram]		3
(a) Definition of atomic mass unit (u) 1 (b) Calculation of energy required 2 (a) atomic mass unit (u) is defined as 1/12 th of the mass of the carbon (12°C) atom.	1	
(b) $m(_{1}H^{2}) \rightarrow m(_{1}H^{1}) + m(_{0}n^{1})$ $Q = (m_{R} - m_{P}) \times 931.5 MeV$ $= (2.014102 - 1.007825 - 1.008665) \times 931.5 MeV$ $= -0.002388 \times 931.5 MeV$ = -2.224 MeV	1/ ₂ 1/ ₂ 1/ ₂	
Hence energy required is 2.224 MeV	1/2	3
(a) Drawing the circuit diagram for V-I characteristics 1 Salient features of V-I characteristics in (i) Forward biasing 1 (ii) Reverse biasing 1		

55/3/2 Page 8 of 15

55/3/2 Page 9 of 15

	D) 6 (C) 3	1	
	(a) (C) 6	_	
	OR (b) (B) sin ⁻¹ (0.225)	1	
(iv)	(D) 10	1	4
	SECTION E		
(a)	(i) Obtaining expression for the capacitance (ii) Finding the electric potential 2 (i) at the surface (ii) at the centre		
is in on th	When a dielectric slab is inserted between the plates of capacitance, there duced charge density σ_P which opposes the original charge density (σ) he plate of capacitance. Extric field with dielectric medium is	1/2	
E	$=\frac{(\sigma-\sigma_P)}{\varepsilon_0}$	1/2	
V=	$= \frac{(\sigma - \sigma_P)}{\varepsilon_0}$ $= E \times d = \frac{(\sigma - \sigma_P)}{\varepsilon_0} d$	1/2	
(σ	$(-\sigma_P) = \frac{\sigma}{K}$	1/2	
V=	$= \frac{\sigma d}{\varepsilon_0 K} = \frac{Q d}{A \varepsilon_0 K}$	1/2	
C :	$=rac{Q}{V}=rac{\mathrm{K}\varepsilon_0A}{d}$	1/2	
	Electric potential due to a point charge $\frac{1}{4\pi\epsilon_0} \frac{q}{r}$	1/2	
(i) A V=	at the surface $\frac{1}{4\pi\varepsilon_0} \frac{q}{r} = \frac{9 \times 10^9 \times 6 \times 10^{-6}}{0.2}$	1/2	
V	$= 2.7 \times 10^5 \text{ V}$	1/2	
	Since electric field inside the hollow sphere is zero, hence V is same as of the surface and remains constant throughout the volume $V = 2.7 \times 10^5 \text{ V}$	1/2	
	OR		
(b)	(i) Expression for electric field at appoint lying (i) inside (ii) outside 2 (ii) Explanation 2		

(i) Field inside the shell

The Flux through the Gaussian surface is

$$= E \times 4\pi R^2$$

1/2

Hence
$$E \times 4\pi R^2 = 0$$

 $E = 0$

1/2

(Note: Award full credit of this part if a student writes directly E=0, mentioning as there is no charge enclosed by Gaussian surface)

(ii) Field outside the shell-

1/2

Electric flux through Gaussian surface

$$E \times 4\pi r^2 = \frac{(\sigma 4\pi R^2)}{\varepsilon_0}$$

1/2

Charge enclosed by the Gaussian surface

$$E \times 4\pi r^2 = \frac{(\sigma \, 4\pi R^2)}{\varepsilon_0}$$

1/2

Using Gauss's law:

$$\int \vec{E} \cdot \vec{ds} = \frac{Q}{\varepsilon_0}$$

$$E \times 4\pi r^2 = \frac{(\sigma \, 4\pi R^2)}{\varepsilon_0}$$

$$E = \frac{\sigma}{\varepsilon_0} \frac{R^2}{r^2} = \frac{q}{4\pi \varepsilon_0 r^2}$$

1/2

$$E = \frac{\sigma}{\varepsilon_0} \frac{R^2}{r^2} = \frac{\varepsilon_0}{4\pi\varepsilon_0 r^2}$$

(ii) For conducting sheet,

Electric field due to a conducting sheet

$$E_c = \frac{\sigma}{\varepsilon_0}$$

1/2

	Surface charge density σ		
	For non-conducting sheet $E_{nc} = \frac{\sigma}{2\varepsilon_0}$ Since surface charge density is same.	1/2	
32.	$2E_{nc} = E_c$ (a) (i)(1)Meaning of current sensitivity, mentioning factors 2 (2) Finding the required resistance 1½ (ii) Finding the induced current 1½	1/2	5
	(i) (1) Current sensitivity of galvanometer is defined as the deflection per unit current. Alternatively, $\frac{\phi}{I} = \frac{NBA}{K}$ Factors	1	
	No. of turns in coil, Magnetic field intensity, Area of coil, Torsional Constant (Any two)	1/2+1/2	
	(2) $R = \frac{V}{I} - G$ for (0-V) Range $R_1 = \frac{V}{2I} - G$ for (0-V/2) Range	1/2	
	$\frac{V}{I} = R + G$ $R_1 = \left(\frac{R+G}{2}\right) - G$	1/2	
	$R_1 = \frac{R - G}{2}$ (ii) $\phi = (2.0t^3 + 5.0t^2 + 6.0t)$ mWb	1/2	
	$ \varepsilon = \frac{d\phi}{dt} = 50 \times 10^{-3} \text{ V}$ $I = \frac{ \varepsilon }{R}$ 50×10^{-3}	1/ ₂ 1/ ₂	
	$I = \frac{\frac{1}{50 \times 10^{-3}}}{5} A = 10 \text{ mA}$	1/2	
	OR		
	(b) (i) Obtaining the expression of emf induced 3 (ii) Calculation of mutual inductance 2		

	Slip rings Alternating emf Carbon brushes	1	
	(i) The flux at any instant t is		
	$\phi = NBA \cos\theta = NBA \cos\omega t$	1/2	
F	From Faraday's law		
	$arepsilon = -rac{d\phi_B}{dt}$	1/2	
	$= -NBA\frac{d}{dt} (\cos \omega t)$	1/2	
	$\boldsymbol{\varepsilon} = -NBA \ \omega \sin \omega t$	1/2	
	$\mu_0 \pi r_1^2 = 4\pi \times 10^{-7} \times \pi r_1^2$		
((ii) $M = \frac{\mu_0 \pi r_1^2}{2r_2} = \frac{4\pi \times 10^{-7} \times \pi r_1^2}{2r_2}$	1/2+1/2	
	$=\frac{2\times10\times10^{-7}\times\left(10^{-2}\right)^2}{100\times10^{-7}}$	1/2	
	$= 2 \times 10^{-10} \text{H}$	1/2	5
	(a) (i) Tracing the path of Ray Obtaining an expression for angle deviation 1½ Drawing Graph (ii) Finding the refractive index A		
	P B C	1/2	
	For quadrilateral AQNR, $\angle A + \angle QNR = 180^{\circ}$ (i) For triangle QNR $r_1 + r_2 + \angle QNR = 180^{\circ}$ (ii)	1/2	

comparing equation (i) and (ii)

$$r_1 + r_2 = A$$
 ----- (iii)

The angle of deviation

$$\delta = (i - r_1) + (e - r_2)$$
 ----- (iv)

from equation (iii) and (iv)

$$\delta = i + e - A$$

1/2

1/2

Graph

1

(ii)

$$\frac{\sin 45^0}{\sin \theta} = \mu$$

$$\frac{1}{\sqrt{2}} = \mu \sin \theta$$

For second surface,

$$\frac{\sin(90^{0} - \theta)}{\sin 90^{0}} = \frac{1}{\mu}$$

$$\frac{\frac{1}{\sqrt{2}}\frac{\cos\theta}{\sin\theta}}{\tan\theta} = 1$$

$$\tan\theta = \frac{1}{\sqrt{2}}$$

1/2

From the triangle GEF

$$\sin\theta = \frac{1}{\sqrt{3}}$$
$$\mu = \sqrt{\frac{3}{2}}$$

1/2

(b)

(i) Expression for resultant intensity

OR

3

(ii) Ratio of intensities

2

$$y_1 = a \cos \omega t$$

$$y_2 = a \cos(\omega t + \phi)$$

$$y = y_1 + y_2$$

$$y = a\cos\omega\,t + a\cos(\,\omega\,t + \phi)$$

1/2

$y = a\cos\omega t + a\cos\omega t\cos\phi - a\sin\omega t\sin\phi$		
$y = a \cos \omega t (1 + \cos \phi) - a \sin \phi \sin \omega t$ Let,		
$a(1 + \cos \phi) = A\cos \theta \qquad (i)$ $a\sin \phi = A\sin \theta \qquad (ii)$	1/2	
Squaring and adding equation (i) and (ii)		
$A^{2} = a^{2}(1 + \cos\phi)^{2} + a^{2}\sin^{2}\phi$	1/2	
$= a^2(1 + \cos^2\phi + 2\cos\phi) + a^2\sin^2\phi$		
$=2a^2(1+\cos\phi)$	1/2	
$= 4a^2 \cos^2 \phi / 2$ $I\alpha A^2$ $I = kA^2$	1/2	
where k is constant $I = 4ka^2 \cos^2 \phi / 2$	1/2	
$(ii) \phi_1 = \frac{2\pi}{\lambda} \times \frac{\lambda}{6} = \pi/3$	1/2	
$I_1 = 4I_0 \cos^2 \phi / 2$		
$= 4I_0 \cos^2(\pi/6) I_1 = 3I_0$	1/2	
$\phi_2 = \frac{2\pi}{\lambda} \times \frac{\lambda}{12} = \pi/6$		
$I_2 = 4I_0 \cos^2(\pi/12)$	1/2	
$I_2 = 4I_0 \cos^2 15^0$		
$\frac{I_1}{I_2} = \frac{3}{4\cos^2 15^0}$	1/2	5

Marking Scheme Strictly Confidential (For Internal and Restricted use only)

	(For Internal and Restricted use only)
	Senior School Certificate Examination, 2024
	SUBJECT PHYSICS (CODE 55/3/3)
Gene	eral Instructions: -
	You are aware that evaluation is the most important process in the actual and correct assessment of
1	the candidates. A small mistake in evaluation may lead to serious problems which may affect the
	future of the candidates, education system and teaching profession. To avoid mistakes, it is
	requested that before starting evaluation, you must read and understand the spot evaluation
	guidelines carefully.
	"Evaluation policy is a confidential policy as it is related to the confidentiality of the
2	examinations conducted, Evaluation done and several other aspects. Its' leakage to public in
	any manner could lead to derailment of the examination system and affect the life and future
	of millions of candidates. Sharing this policy/document to anyone, publishing in any
	magazine and printing in News Paper/Website etc may invite action under various rules of
	the Board and IPC."
2	Evaluation is to be done as per instructions provided in the Marking Scheme. It should not be done
3	according to one's own interpretation or any other consideration. Marking Scheme should be
	strictly adhered to and religiously followed. However, while evaluating, answers which are
	based on latest information or knowledge and/or are innovative, they may be assessed for
	their correctness otherwise and due marks be awarded to them. In class-X, while evaluating
	two competency-based questions, please try to understand given answer and even if reply is
	not from marking scheme but correct competency is enumerated by the candidate, due
	marks should be awarded.
	The Marking scheme carries only suggested value points for the answers. These are in the nature
4	of Guidelines only and do not constitute the complete answer. The students can have their own
	expression and if the expression is correct, the due marks should be awarded accordingly.
	The Head-Examiner must go through the first five answer books evaluated by each evaluator on
5	the first day, to ensure that evaluation has been carried out as per the instructions given in the
	Marking Scheme. If there is any variation, the same should be zero after deliberation and
	discussion. The remaining answer books meant for evaluation shall be given only after ensuring
	that there is no significant variation in the marking of individual evaluators.
6	Evaluators will mark ($\sqrt{}$) wherever answer is correct. For wrong answer CROSS 'X" be marked.
U	Evaluators will not put right () while evaluating which gives an impression that answer is correct
	and no marks are awarded. This is most common mistake which evaluators are committing.
	If a question has parts, please award marks on the right-hand side for each part. Marks awarded for
7	different parts of the question should then be totaled up and written in the left-hand margin and
	encircled. This may be followed strictly.
	If a question does not have any parts, marks must be awarded in the left-hand margin and
8	encircled. This may also be followed strictly.
	If a student has attempted an extra question, answer of the question deserving more marks should
9	be retained and the other answer scored out with a note "Extra Question".
10	No marks to be deducted for the cumulative effect of an error. It should be penalized only once.
10	1

Page 1 of 14 55/3/3

11	A full scale of marks 0-70 has to be used. Please do not hesitate to award full marks if the answer deserves it.
12	Every examiner has to necessarily do evaluation work for full working hours i.e., 8 hours every day and evaluate 20 answer books per day in main subjects and 25 answer books per day in other subjects (Details are given in Spot Guidelines). This is in view of the reduced syllabus and number of questions in question paper.
	Ensure that you do not make the following common types of errors committed by the Examiner in
13	the past:-
	 Leaving answer or part thereof unassessed in an answer book. Giving more marks for an answer than assigned to it. Wrong totaling of marks awarded on an answer. Wrong transfer of marks from the inside pages of the answer book to the title page. Wrong question wise totaling on the title page. Wrong totaling of marks of the two columns on the title page. Wrong grand total. Marks in words and figures not tallying/not same. Wrong transfer of marks from the answer book to online award list. Answers marked as correct, but marks not awarded. (Ensure that the right tick mark is correctly and clearly indicated. It should merely be a line. Same is with the X for incorrect answer.) Half or a part of answer marked correct and the rest as wrong, but no marks awarded.
14	While evaluating the answer books if the answer is found to be totally incorrect, it should be marked as cross (X) and awarded zero (0)Marks.
15	Any unassessed portion, non-carrying over of marks to the title page, or totaling error detected by the candidate shall damage the prestige of all the personnel engaged in the evaluation work as also of the Board. Hence, in order to uphold the prestige of all concerned, it is again reiterated that the instructions be followed meticulously and judiciously.
16	The Examiners should acquaint themselves with the guidelines given in the "Guidelines for Spot Evaluation" before starting the actual evaluation.
17	Every Examiner shall also ensure that all the answers are evaluated, marks carried over to the title page, correctly totaled and written in figures and words.
18	The candidates are entitled to obtain photocopy of the Answer Book on request on payment of the prescribed processing fee. All Examiners/Additional Head Examiners/Head Examiners are once again reminded that they must ensure that evaluation is carried out strictly as per value points for each answer as given in the Marking Scheme.

55/3/3 Page 2 of 14

	MARKING SCHEME: PHYSICS (042)		
	CODE: 55/3/3		
Q.NO.	VALUE POINT/ EXPECTED ANSWERS	MARKS	TOTAL MARKS
	SECTION A		
1.	(B) 0.1mC	1	1
2.	(B) $1.6 \times 10^{-18} \text{ J}$	1	1
3.	(C) –(0.24 nT) \hat{k}	1	1
4.	(D) Sodium Chloride	1	1
5.	(B) 0.3 MB	1	1
6.	(D) 100 V	1	1
7.	(B) <i>l</i> is decreased and A is increased	1	1
8.	(A) +z direction and in phase with \vec{E}	1	1
9.	(B) 2	1	1
10.	$(A)\frac{\lambda}{\sqrt{2}}$	1	1
11.	(B) decreased by 87.5%	1	1
12.	(B) 0.05 eV	1	1
13.	(D) Assertion (A) is false and Reason (R) is also false.	1	1
14.	(C) Assertion (A) is true but Reason (R) is false.	1	1
15.	(A) Both Assertion (A) and Reason (R) are true and Reason (R) is the	1	1
16	correct explanation of the Assertion (A).	1	1
16.	(A) Both Assertion (A) and Reason (R) are true and Reason (R) is the correct explanation of the Assertion (A).	1	1
	SECTION B		
17.			
	Meaning of relaxation time ½		
	Derivation of R 1½		
	Average time between two successive collisions of electron in presence of	1/	
	electric field. Drift velocity of an electron	1/2	
	•		
	$v_d = \frac{eE}{m}\tau$ (i)	1/2	
	Current flowing through a conductor of length l and area of cross section A	, -	
	$I = neAv_d$ (ii)		
	u .		
	$I = \frac{ne^2 A E \tau}{m} = \frac{ne^2 A \tau V}{ml}$	1/2	
	$R = \frac{V}{I} = \frac{ml}{ne^2 \tau A}$	1/	
		1/2	
	OR		
	Circuit diagram of Whastatana haidas		
	galvanometer 1½		
	Circuit diagram of Wheatstone bridge ½ Obtaining the condition when current flows through galvanometer 1½		

55/3/3 Page 3 of 14

	By applying Kirchoff's loop rule to closed loops ADBA and CBDC	1/2	
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1/2	
	$\frac{I_1}{I_2} = \frac{R_2}{R_1}$ From eq (ii) -	1/2	
	$\frac{I_1}{I_2} = \frac{R_4}{R_3}$		
	Hence, $\frac{R_2}{R_1} = \frac{R_4}{R_3}$	1/2	2
18.	Finding the focal length of objective lens 2		
	Magnifying power =24 , Distance between lenses =150 cm $\frac{f_o}{f_e} = 24$	1/2	
	$f_o + f_e = 150 \text{ cm}$ $f_e = 6 \text{ cm}$ $f_o = 144 \text{ cm}$	1/ ₂ 1/ ₂ 1/ ₂	2
19.	Sustained or stable interference 1 Conditions for sustained interference 1 When position of maxima and minima is not changing with time, interference pattern is called sustained or stable interference.	1	
	❖ Light sources must be coherent	1	2
20.	Possibility of emission of electron 1 Calculation of longest wavelength of emitted electron 1 $E = \frac{hc}{\lambda}$		

55/3/3 Page 4 of 14

		1	
	$=\frac{1240eVnm}{}$	1/2	
	$-\frac{1}{600nm}$		
	=2.06eV		
	: Work function $\phi_0 = 2.3 eV$		
	$:: E < \phi_0$ No emission will take place.	1/2	
	· ·		
	$\lambda_{\max} = \frac{hc}{\phi}$		
	,	1./	
	$=\frac{1240eVnm}{2.3eV}$	1/2	
		1/2	2
21	$\lambda_{\text{max}} = 539.13 nm$	/ 2	
21.	Calculation of concentration of holes & electrons 2		
	$n_{_{e}}n_{_{h}}=n_{_{i}}^{^{2}}$	1/2	
	$n_h \approx 5 \times 10^{22} / m^3$		
	$n_h \sim 3 \wedge 10^{-7} m$		
	$n_e = rac{n_i^2}{n_h}$		
	$n_e = \frac{(1.5 \times 10^{16})^2}{5 \times 10^{22}}$	1/2	
	$n_e = 4.5 \times 10^9 / m^3$	1/2	
	$n_h > n_e$, it is a p- type crystal	1/2	2
	CECTION C		
	SECTION C		
22.	Calculation of		
	(a) Electric field across the wire		
	(b) Current density 1		
	(c) Average relaxation time (c)		
	(a) $E = \frac{V}{I}$	1./	
	·	1/2	
	$=\frac{1.0V}{1.0m}=1.0 \text{ V/m}$	1/2	
		, -	
	(b) $J = I/A$	1/2	
	$1.6A$ $1.6 \times 10^7 \text{A/m}^2$	1/	
	$J = \frac{1.6 A}{1.0 \times 10^{-7} m^2} = 1.6 \times 10^7 \text{A/m}^2$	1/2	
	m J		
	(c) $\tau = \frac{m}{ne^2} \frac{J}{E}$	1/2	
	$9.1 \times 10^{-31} \times 1 \times 1.6$		
	$=\frac{9.1\times10^{-31}\times1\times1.6}{9\times10^{28}\times\left(1.6\times10^{-19}\right)^2}$		
		1/2	3
	$=6.31\times10^{-14}$ s	72	3

23.			
20.	Derivation of magnetic dipole moment 2 ½		
	Gyromagnetic ratio ½		
	Electron revolve around the nucleus constitute a current		
	$I = \frac{e}{T}$	1/2	
	$T = \frac{2\pi r}{2\pi r}$		
	$I = \frac{1}{v}$		
	$I = \frac{ev}{2\pi r}$	1/2	
	$2\pi r$ Magnetic moment, M =I.A		
	$\mu_l = \frac{ev.\pi r^2}{2\pi r}$	1/2	
	$\mu_l = \frac{evr}{2}$		
	_	1/2	
	(L = mvr) Since electron has negative charge, μ_l is opposite in direction of an electron		
	of angular momentum L.		
	$\overrightarrow{\mu_l} = -\frac{e}{2m}\overrightarrow{L}$	1/2	
	Gyromagnetic ratio- The ratio of magnetic moment to angular momentum	, -	
	is called gyromagnetic ratio.		
	That is, $\frac{\mu_e}{L} = \frac{e}{2m}$	1/2	3
	[Note- give half mark of gyromagnetic ratio to each student, if it is not attempted]]		
24.	Proof of induced charge 3		
	Using Faraday's law of electromagnetic induction		
	$ \varepsilon = \frac{\triangle \phi}{}$	1/	
	$\triangle t$	1/2	
	$\left \mathcal{E} \right = \frac{\triangle \phi}{\triangle t}$ $I = \frac{\left \mathcal{E} \right }{R}$	1/2	
	$\frac{\kappa}{1(\Delta\phi)}$	1/2	
	$I = \frac{1}{R} \left(\frac{\Delta \phi}{\Delta t} \right)$	/2	
	$\frac{\Delta Q}{\Delta t} = \frac{1}{R} \left(\frac{\Delta \phi}{\Delta t} \right)$ $\Delta Q = \frac{\Delta \phi}{R}$	1/2	
	$\triangle t = R \setminus \triangle t$		
	$\triangle Q = \frac{\triangle \phi}{R}$	1/2	
	R Hence induced charge depends on change in magnetic flux, not on the time		
	interval of flux change.	1/2	3
25.	(a) Finding the wavelength and frequency 1+1		
	(b) Finding the amplitude of magnetic field ½		
	(c) Writing expression for magnetic field ½		

55/3/3 Page 6 of 14

3
_
3
3
3
3
3

55/3/3 Page 7 of 14

55/3/3 Page 8 of 14

	(ii) $ E_{C} $ $ E_{g} < 3 \text{ eV} $ $ E_{V} $	1	
	(iii) Overlapping conduction band $E_{V} = E_{C}$ Valence band	1	3
	SECTION D		
29.	(i) (D) IV	1	
	(ii) (D) accelerate along $-\hat{i}$ (iii) (A) $V = V_0 + \alpha x$ (iv) (a) (C) $E_4 > E_3 > E_2 > E_1$ OR	1 1	
	(b) (B) 2.6×10^6 m/s	1	4
30.	(i) (D) 6 (ii) (C) 3 (iii) (a) (C)6	1 1	
	OR	1	
	(b) (B) $\sin^{-1}(0.225)$		
	(iv) (D) 10	1	4
	SECTION E		
31.	(a) (i) Obtaining expression for the capacitance 3 (ii) Finding the electric potential 2 (i) at the surface (ii) at the centre		
	When a dielectric slab is inserted between the plates of capacitance there is induced charge density σ_P which opposes the original charge density (σ) on the plate of capacitance. Electric field with dielectric medium is	1/2	
	$E = \frac{(\sigma - \sigma_P)}{\varepsilon_O}$	1/2	
	$E = \frac{(\sigma - \sigma_P)}{\varepsilon_0}$ $V = E \times d = \frac{(\sigma - \sigma_P)}{\varepsilon_0} d$	1/2	
	$(\sigma - \sigma_P) = \frac{\sigma}{K}$	1/2	
	$V = \frac{\sigma d}{\varepsilon_0 K} = \frac{Qd}{A\varepsilon_0 K}$	1/2	
	$C = \frac{Q}{V} = \frac{K\varepsilon_0 A}{d}$	1/2	

(ii) Electric potential due to a point charge		
$V = \frac{1}{4\pi\varepsilon_0} \frac{q}{r}$	1/2	
(i) At the surface		
$V = \frac{1}{4\pi\varepsilon_0} \frac{q}{r} = \frac{9 \times 10^9 \times 6 \times 10^{-6}}{0.2}$	1/2	
$4\pi\epsilon_0 r$ 0.2		
$V = 2.7 \times 10^5 \text{ V}$	1/2	
(ii) Since electric field inside the hollow sphere is zero, hence V remains		
constant throughout the volume.		
$V = 2.7 \times 10^5 \text{ V}$	1/2	
OR		
(b) (i) Expression for electric field at appoint lying		
(1) Expression for electric field at appoint rying		
(i) inside 1 2		
(ii) Explanation 2		
(II) Explanation 2		
(i) Field inside the shell		
Gaussian surface		
Surface charge density o		
ROT		
The Flux through the Gaussian surface is		
$= E \times 4\pi R^2$	1/2	
In this case Gaussian surface enclosed no charge.	, <u>-</u>	
Hence $E \times 4\pi R^2 = 0$		
E = 0	1/2	
(Note: Award full credit of this part if a student writes directly E=0, mentioning as there is no charge enclosed by Gaussian surface)		
(ii) <u>Field outside the shell</u> -		
Surface charge Gaussian surface density σ		
density 6		
R _O P	1/2	

	Electric flux through Gaussian surface		
	$E \times 4\pi r^2 = \frac{(\sigma 4\pi R^2)}{\varepsilon_0}$	1/2	
	-0		
	Charge enclosed by the Gaussian surface		
	$E \times 4\pi r^2 = \frac{(\sigma 4\pi R^2)}{\varepsilon_0}$		
	Using Gauss's law:		
	$\int \vec{E} \cdot \vec{ds} = \frac{Q}{\varepsilon_0}$	1/2	
	ε_0		
	$E \times 4\pi r^2 = \frac{(\sigma 4\pi R^2)}{\varepsilon_0}$ $E = \frac{\sigma}{\varepsilon_0} \frac{R^2}{r^2} = \frac{q}{4\pi \varepsilon_0 r^2}$		
	$F = \frac{\sigma}{R^2} = \frac{q}{q}$		
	$E - \frac{1}{\varepsilon_0} \frac{1}{r^2} - \frac{1}{4\pi\varepsilon_0 r^2}$	1/2	
	(ii) For conducting sheet,		
	Electric field due to a conducting sheet		
	$E_c = \frac{\sigma}{\varepsilon_0}$	1/2	
	$arepsilon_0$ Surface		
	z charge density σ		
	y		
	E 2 E y		
	← x → → → →		
	For non-conducting sheet		
	$E_{nc} = \frac{\sigma}{2\varepsilon_0}$	1/2	
	Since surface charge density is same.	1/2	
	$2E_{nc} = E_c$	1/2	5
32.			
	(a) (i)(1) Meaning of current sensitivity, mentioning factors 2		
	(2) Finding the required resistance 1½		
	(ii) Finding the induced current 1½		
	(i) (1) Current sensitivity of galvanometer is defined as the deflection per		
	unit current.	1	
	Alternatively,		
	$\frac{\phi}{I} = \frac{NBA}{K}$		
	Factors		
	Number of turns in coil, Magnetic field intensity, Area of coil, Torsional		
	Constant (Any two)	1/2+1/2	
	(121)		
	(2) $R = \frac{V}{I} - G$ for (0-V) Range	1/2	
	(2) $R = \frac{V}{I} - G$ for (0-V) Range $R_1 = \frac{V}{2I} - G$ for $(0 - \frac{V}{2})$ Range	72	
	$\frac{R_1 - \frac{1}{2I} - G}{V}$ for $\left(0 - \frac{1}{2}\right)$ Range	1/2	
	$\frac{v}{I} = R + G$		
	$R_1 = \left(\frac{R+G}{2}\right) - G$		
	_ (2)		

г	D (1	1
$R_1 =$	$=\frac{R-G}{2}$		1/2	
(ii) φ	$= (2.0t^3 + 5.0t^2 + 6.0t) \text{ mWb}$			
ε =	$= \frac{d\phi}{dt} = 50 \times 10^{-3} \text{ V}$		1/2	
$I = \frac{18}{4}$	<u> </u>		1/	
$I = \frac{5}{2}$	$\frac{10\times10^{-3}}{5}$ A=10 mA		1/ ₂ 1/ ₂	
	5			
	OR			
(b)	(i) Obtaining the expression of emf induced	3		
	(ii) Calculation of mutual inductance	2		
	N S Slip rings Alternating emf		1	
	e flux at any instant t is			
ϕ	$= NBA \cos\theta = NBA \cos\omega t$		1/2	
From I	Faraday's law			
	$=-rac{d\phi_B}{dt}$		1/2	
			1.	
	$-NBA\frac{d}{dt}(\cos\omega t)$		1/2	
	ut			
	$= -NBA \omega \sin \omega t$ $= -NBA \omega \sin \omega t$ $= 4\pi \times 10^{-7} \times \pi r^{2}$		1/2	
(ii)	$M = \frac{\mu_0 \pi r_1^2}{2r_2} = \frac{4\pi \times 10^{-7} \times \pi r_1^2}{2r_2}$		1/2+1/2	
	$2 \times 10^{-7} \times (10^{-2})^2$			
	$=\frac{2\times10\times10^{-7}\times(10^{-2})^2}{100\times10^{-7}}$		1/2	
	$= 2 \times 10^{-10} \text{H}$		1/2	5
(a)	(i) Tracing the path of RayObtaining an expression for angle deviationDrawing Graph(ii) Finding the refractive index	1/2 11/2 1 2		

	ı	T.
1		
$\tan \theta = \frac{1}{\sqrt{2}}$	1/	
From the triangle GEF	1/2	
$\sin \theta = \frac{1}{\sqrt{3}}$		
√3 	1/2	
$\mu = \sqrt{\frac{3}{2}}$	/2	
OR		
(b) (i) Expression for resultant intensity 3		
(ii) Ratio of intensities 2		
(i) $y_1 = a \cos \omega t$		
$y_1 = a \cos \omega t$ $y_2 = a \cos(\omega t + \phi)$		
According to the principle of superposition		
$y = y_1 + y_2$		
$y = a\cos\omega t + a\cos(\omega t + \phi)$	1/2	
$y = a\cos\omega t + a\cos\omega t\cos\phi - a\sin\omega t\sin\phi$		
$y = a\cos\omega t(1 + \cos\phi) - a\sin\phi\sin\omega t$	1/2	
Let,		
$a(1 + \cos \phi) = A\cos \theta \qquad (i)$		
$a \sin \phi = A \sin \theta$ (ii)	1/2	
Squaring and adding equation (i) and (ii)	/2	
$A^2 = a^2 (1 + \cos\phi)^2 + a^2 \sin^2\phi$		
$= a^2(1 + \cos^2\phi + 2\cos\phi) + a^2\sin^2\phi$		
$=2a^2(1+\cos\phi)$		
$=4a^2\cos^2\phi/2$	1/2	
$I\alpha A^2$	/ 2	
$I = kA^2$	1/2	
where k is constant		
$I = 4ka^2 \cos^2 \phi / 2$	1/2	
[Award full credit for this part for any other alternative methods]		
(ii) $\phi_1 = \frac{2\pi}{\lambda} \times \frac{\lambda}{6} = \pi/3$	1/2	
$I_1 = 4I_0 \cos^2 \phi / 2$		
$= 4I_0 \cos^2(\pi/6)$		
$I_1 = 3I_0$	1/2	
$\phi_2 = \frac{2\pi}{\lambda} \times \frac{\lambda}{12} = \pi/6$	1/	
$I_2 = 4I_0 \cos^2(\pi/12)$	1/2	
$I_2 = 4I_0 \cos^2 15^0$		
$I_{2} = 4I_{0} \cos^{2} 15^{0}$ $\frac{I_{1}}{I_{2}} = \frac{3}{4 \cos^{2} 15^{0}}$	1/2	5
-2 200 20	/ 4	