Marking Scheme Strictly Confidential (For Internal and Restricted use only) Senior School Certificate Examination, 2024

SUBJECT- PHYSICS (CODE 55/2/1)

General Instructions: -

- You are aware that evaluation is the most important process in the actual and correct assessment of the candidates. A small mistake in evaluation may lead to serious problems which may affect the future of the candidates, education system and teaching profession. To avoid mistakes, it is requested that before starting evaluation, you must read and understand the spot evaluation guidelines carefully.
- 2 "Evaluation policy is a confidential policy as it is related to the confidentiality of the examinations conducted, Evaluation done and several other aspects. Its' leakage to public in any manner could lead to derailment of the examination system and affect the life and future of millions of candidates. Sharing this policy/document to anyone, publishing in any magazine and printing in News Paper/Website etc. may invite action under various rules of the Board and IPC."
- Evaluation is to be done as per instructions provided in the Marking Scheme. It should not be done according to one's own interpretation or any other consideration. Marking Scheme should be strictly adhered to and religiously followed. However, while evaluating, answers which are based on latest information or knowledge and/or are innovative, they may be assessed for their correctness otherwise and due marks be awarded to them. In class-X, while evaluating two competency-based questions, please try to understand given answer and even if reply is not from marking scheme but correct competency is enumerated by the candidate, due marks should be awarded.
- 4 The Marking scheme carries only suggested value points for the answers

These are in the nature of Guidelines only and do not constitute the complete answer. The students can have their own expression and if the expression is correct, the due marks should be awarded accordingly.

- The Head-Examiner must go through the first five answer books evaluated by each evaluator on the first day, to ensure that evaluation has been carried out as per the instructions given in the Marking Scheme. If there is any variation, the same should be zero after delibration and discussion. The remaining answer books meant for evaluation shall be given only after ensuring that there is no significant variation in the marking of individual evaluators.
- Evaluators will mark ($\sqrt{\ }$) wherever answer is correct. For wrong answer CROSS 'X" be marked. Evaluators will not put right (\checkmark) while evaluating which gives an impression that answer is correct and no marks are awarded. This is most common mistake which evaluators are committing.
- If a question has parts, please award marks on the right-hand side for each part. Marks awarded for different parts of the question should then be totaled up and written in the left-hand margin and encircled. This may be followed strictly.
- If a question does not have any parts, marks must be awarded in the left-hand margin and encircled. This may also be followed strictly.
- 9 If a student has attempted an extra question, answer of the question deserving more marks should be

55/2/1 Page **1** of **16**

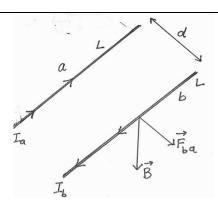
	retained and the other answer scored out with a note "Extra Question".
10	No marks to be deducted for the cumulative effect of an error. It should be penalized only once.
11	A full scale of marks $0-70$ has to be used. Please do not hesitate to award full marks if the answer deserves it.
12	Every examiner has to necessarily do evaluation work for full working hours i.e., 8 hours every day and evaluate 20 answer books per day in main subjects and 25 answer books per day in other subjects (Details are given in Spot Guidelines). This is in view of the reduced syllabus and number of questions in question paper.
13	Ensure that you do not make the following common types of errors committed by the Examiner in the past:-
14 15	 Leaving answer or part thereof unassessed in an answer book. Giving more marks for an answer than assigned to it. Wrong totaling of marks awarded on an answer. Wrong transfer of marks from the inside pages of the answer book to the title page. Wrong question wise totaling on the title page. Wrong totaling of marks of the two columns on the title page. Wrong grand total. Marks in words and figures not tallying/not same. Wrong transfer of marks from the answer book to online award list. Answers marked as correct, but marks not awarded. (Ensure that the right tick mark is correctly and clearly indicated. It should merely be a line. Same is with the X for incorrect answer.) Half or a part of answer marked correct and the rest as wrong, but no marks awarded. While evaluating the answer books if the answer is found to be totally incorrect, it should be marked as cross (X) and awarded zero (0)Marks. Any unassessed portion, non-carrying over of marks to the title page, or totaling error detected by the candidate shall damage the prestige of all the personnel engaged in the evaluation work as also of the Board. Hence, in order to uphold the prestige of all concerned, it is again reiterated that the instructions be followed meticulously and judiciously.
16	The Examiners should acquaint themselves with the guidelines given in the "Guidelines for Spot Evaluation" before starting the actual evaluation.
17	Every Examiner shall also ensure that all the answers are evaluated, marks carried over to the title page, correctly totaled and written in figures and words.
18	The candidates are entitled to obtain photocopy of the Answer Book on request on payment of the prescribed processing fee. All Examiners/Additional Head Examiners/Head Examiners are once again reminded that they must ensure that evaluation is carried out strictly as per value points for each answer as given in the Marking Scheme.

55/2/1 Page **2** of **16**

	MARKING SCHEME : PHYSICS (042) CODE :55/2/1			
Q.No	VALUE POINTS/EXPECTED ANSWERS	MARKS	TOTAL MARKS	
	SECTION -A			
1.	(C) $\sqrt{\frac{m_p}{m_Q}}$	1	1	
2.	(A) $\frac{\mathbf{v}_d}{2}$	1	1	
3.	(B) 1.54Am^2	1	1	
4.	(C) 31.4µWb	1	1	
5.	(D) Magnetic Flux and Power both	1	1	
6.	(B) 100V	1	1	
7.	(B) Ultraviolet rays	1	1	
8.	(C) 375 nm	1	1	
9.	$(B)\frac{1}{\lambda_1} + \frac{1}{\lambda_2} = \frac{1}{\lambda_3}$	1	1	
10.	(C) $\frac{1}{K}$	1	1	
11.	(C) P	1	1	
12.	(B) The barrier height increases and the depletion region widens.	1	1	
13.	(A) Both Assertion(A) and Reason (R) are true and Reason(R) is the correct explanation of the Assertion (A)	1	1	
14.	(B) Both Assertion(A) and Reason (R) are true but Reason(R) is not the correct explanation of the Assertion (A)	1	1	
15.	(A) Both Assertion(A) and Reason (R) are true and Reason(R) is the correct explanation of the Assertion (A)	1	1	
16.	(C) Assertion(A) is true, but Reason (R) is false	1	1	
	SECTION -B	•	•	
17.	Defining resistivity Dependence of resistivity on (a) Number density of free electron (b) Relaxation time 1 1 1 1 1 1 1 1 1 1 1 1 1			
	Resistance offered by a material of unit length and having unit cross-sectional area is called resistivity. $\rho = \frac{m}{ne^2\tau}$	1		
	$ne^{-\tau}$ (a) $\rho \alpha \frac{1}{-}$	1/2		
	(b) $\rho \alpha \frac{1}{\tau}$	1/2	2	

55/2/1 Page **3** of **16**

18.	(a) Ol	otaining expression for resultant intensity 2		
	$x_1 = a \cos \theta$	os ot		
	-	$\cos(\omega t + \phi)$	1/2	
	$x = x_1 +$			
	$=a(\cos$	$\omega t + \cos(\omega t + \phi))$		
		$\cos(\omega t + \frac{\phi}{2})\cos\frac{\phi}{2}$		
	$=2a\cos$	$s\frac{\phi}{2}\cos(\omega t + \frac{\phi}{2})$	1/2	
	Intensi			
		amplitude) 2 where K is a constant.	1/2	
	=K(2a	$\left(\cos\frac{\varphi}{2}\right)^2$		
	$=4I_0 \cos$	$s^2 \frac{\phi}{2}$	1/2	
		² = intensity of each incident wave.		
		Award full credit of this part for all other alternative correct		
	metho	OR		
	(b)	Effect and justification		
		(i) Source slit moved closer to plane of slits 1		
		(ii) Separation between two slits		
	(i)Shar	pness of interference pattern decreases		
		$\frac{s}{S} < \frac{\lambda}{d}$	4	
	A - C -1	Su	1	
		ecreases, interference patterns produced by different parts of the source of and finally fringes disappear.		
	Altern	· · · · · · · · · · · · · · · · · · ·		
		source slit is brought closer to the plane of the slits, the screen gets		
		ated uniformly and fringes disappear.		
	Altern	· ·		
		rence pattern is not formed. Award full credit of this part if a student merely attempts this		
	part.)	Award full credit of this part if a student increix attempts this		
	1			
	(ii) β=	$\pm \frac{\lambda D}{2}$	1/2	
		u	1/2	2
10	As a in	creases, β decreases and fringes disappear.	/2	
19.	Fine	ding focal length 1 ½		
		ure of the lens ½		
		nvex lens in air		
	$\frac{1}{n} = \frac{n}{n}$	$\left(\frac{g}{R_1}-1\right)\left(\frac{1}{R_1}-\frac{1}{R_2}\right)$		
	$\int_a \int n$	$R_a = \int (R_1 - R_2)$		


55/2/1 Page **4** of **16**

	For convex lens in liquid.		
	$\frac{1}{f_l} = \left(\frac{n_g}{n_l} - 1\right) \left(\frac{1}{R_1} - \frac{1}{R_2}\right)$	1/2	
	$\frac{1.52-1}{1.52}$		
	$\frac{f_l}{f_a} = \frac{\frac{182}{1}}{1.52 - 1.65}$	1/2	
	1.65		
	= -6.6		
	$f_t = -6.6 f_a$ $= -99 \text{cm}$	1/2	
	Nature of the lens: Diverging/ behaves like a concave lens.	1/2	2
20.	Calculation of binding energy 2		
	Binding Energy = $(\text{Zm}_p + (A - Z)m_n - M_N) \times 931.5 \text{ MeV}$	1/2	
	B. E.= $(6 \times 1.007825 + 6 \times 1.008665 - 12.000000)$ x 931.5 MeV	1/2	
	$= (0.09894) \times 931.5 \text{ MeV}$	1/2	
21	B. E. = 92.16 MeV	1/2	2
21.	Effect on energy gap and justification		
	(i) Trivalent impurity $\frac{1}{2} + \frac{1}{2}$		
	(ii) Pentavalent impurity $\frac{1}{2} + \frac{1}{2}$		
	(i) Decreases	1/2	
	Justification: An acceptor energy level is formed just above the top of the		
	valence band.	1/2	
	(ii) Decreases	1/2	
	Justification: A donor level is formed just below the bottom of conduction	1/2	2
	band. Alternatively		
	Meridavely		
	E_{C}		
	© ≈0.01eV		
	E_g		
	≈0.01 - 0.05 eV		
	(Note: Award the credit of justification if a student draws band diagram)		
	SECTION C		
22.	SECTION		
	Finding magnitude and direction of current in AG, BF and CD 1+1+1		

	2Ω B 2Ω		
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1/2	
	By Kirchoff's Laws (at point B) $I_1 + I_2 = I_3 \qquad(1)$ In the closed loop AGFBA $3 + 2I_3 - 6 + 4I_2 + 2I_3 = 0$	1/2	
	$I_2 + I_3 = \frac{3}{4}$ (2) From (i) $2I_1 + I_2 = \frac{3}{4}$ (3)	1/2	
	In closed loop BFDCB $-4I_2 + 6 + 2I_1 - 6 + 2I_1 = 0$ $I_2 - I_1 = 0$	1/2	
	$I_2 = I_1 = 0$ $I_2 = I_1$ (4) Putting in (3) $I_1 = \frac{1}{4}A$	1/2	
	From (4) $I_2 = \frac{1}{4}A$		
	From (2) $I_3 = \frac{1}{2}A$	1/2	3
23.	(a) Factors affecting speed of Electromagnetic wave 1 (b) Production of Electromagnetic wave 1 (c) Sketch of Electromagnetic wave 1 (a) Speed of EM waves $v = \frac{1}{\sqrt{\mu \varepsilon}}$ Speed depends upon		
	(i) Permittivity (ε) of medium(ii) Magnetic permeability (μ) of medium	$\frac{1}{2} + \frac{1}{2}$	
	(b) Accelerated charges or oscillating charges produce electromagnetic waves (c) x E	1	
	y B	1	3

55/2/1

_			
Ca	lculation of current induced in the coil 3		
Indu	$\operatorname{ced emf}(\varepsilon) = \frac{-Nd\phi}{dt}$	1/2	
IIIGG			
	$=rac{-NAdB}{dt}$		
	$=-NA\frac{d}{dt}(\mu_0 nI)$		
	$=-N\mu_0 n(\pi r^2)\frac{dI}{dt}$		
$\varepsilon =$	$\frac{100 \times 4\pi \times 10^{-7} \times 250 \times 10^{2} \times \pi \times (1.6 \times 10^{-2})^{2} \times 1.5}{25 \times 10^{-3}}$	1	
	0.1536V	1/2	
<i>I</i> =	$\frac{\mathcal{E}}{\mathcal{E}}$		
	0.03A	1/2	
	VIOLE 2	1/2	
Alte	rnatively		
ε = -	$M\frac{dI}{dt}$	1/2	
	$\mu_0 n_1 n_2 \pi r_1^{-2} l$		
	$\mu_0(n_1l)n_2\pi r_1^2$	1/2	
= 4	$4\pi \times 10^{-7} \times 100 \times 250 \times 10^{2} \times \pi \times (1.6 \times 10^{-2})^{2}$		
	$2.56 \times 10^{-3} H$	1/2	
=-	$-2.56 \times 10^{-3} \times \frac{(0-1.5)}{25 \times 10^{-3}}$		
	0.1536V	1/2	
	$=\frac{\varepsilon}{R} = \frac{0.1536}{5}$	1/2	
		1.0	3
(a) _[= 0.03A	1/2	3
(a)	Explaining nature of force ½		
	Obtaining expression of force 1½		
	Defining one ampere 1		
Natu	re of force is repulsive.	1/2	
	•		

1/2

Magnetic field due to current Ia at all points of conductor b

$$B_{ab} = \frac{\mu_0 I_a}{2\pi d}$$
 directed downwards

1/2

Force experienced by conductor b on its segment of length l

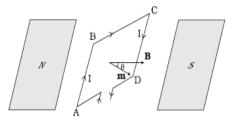
$$\begin{aligned} F_{ab} &= I_b l B_{ab} \\ &= \frac{\mu_0 I_a I_b}{2\pi d} l \end{aligned}$$

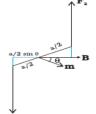
1/2

Similarly

Force experienced by conductor a on its segment of length l

$$F_{ba} = \frac{\mu_0 I_a I_b}{2\pi d} l$$
 directed towards right


tre 1


One ampere is that steady current which when maintained in each of two very long straight parallel conductors of negligible cross-section, placed one metre apart in vacuum produces a force of $2x10^{-7}$ N/m on each conductor.

OR

(b)

Obtaining expression of torque	2	
Drawing diagram	1	
		-

1

Forces on arm BC and DA are equal and opposite and act along the axis of the coil. Being collinear they cancel each other.

1/2

Forces on arms AB and CD are equal and opposite but not collinear. They form a couple.

$$F_1 = F_2 = IbB$$

$$\tau = F_1 \frac{a}{2} \sin \theta + F_2 \frac{a}{2} \sin \theta$$

55/2/1

	$\tau = IAB\sin\theta$ (where A = ab & m = IA)		
	$\vec{\tau} = \vec{m} \times \vec{B}$	1/2	3
26.	Deriving expression for radius Finding numerical value of a ₀ Example 1		
	From Bohr's second postulate $m v r = \frac{nh}{2\pi} \qquad \dots (1)$	1/2	
	Also $\frac{mv^2}{r} = \frac{e^2}{4\pi\varepsilon_0 r^2}$ (z=1)	1/2	
	$v = \frac{e}{\sqrt{4\pi\varepsilon_0 mr}}$ Substituting in (1) and simplifying	1/2	
	$r = \frac{n^2 h^2 \varepsilon_0}{\pi m e^2}$ For n = 1 r = a ₀ (Bohr's radius) $(6.63 \times 10^{-34})^2 \times 8.854 \times 10^{-12}$	1/2	
	$a_o = \frac{(6.63 \times 10^{-34})^2 \times 8.854 \times 10^{-12}}{3.14 \times 9.1 \times 10^{-31} \times (1.6 \times 10^{-19})^2}$ $= 5.29 \times 10^{-11} \text{m}$ $= 0.53 \text{Å}$	1/2	
	- 0.5311	1/2	3
27.	(a) Interpretation of slope of line and justification (b) Identification and justification $\frac{1}{2} + \frac{1}{2}$ (c) Validation of graph and justification $\frac{1}{2} + \frac{1}{2}$ (a) $\lambda = \frac{h}{\sqrt{2mK}} = \frac{h}{\sqrt{2m}} \times \frac{1}{\sqrt{K}}$ $slope = \frac{h}{\sqrt{2m}}$	1/2	
	(b) $slope \alpha \frac{1}{\sqrt{m}}$	1/2	
	Slope of m_2 is more than that of m_1 . Therefore, m_1 is heavier. (c) No Momentum $(p) = \sqrt{2mK}$ is not valid for a photon	1/ ₂ 1/ ₂ 1/ ₂	3
28.	Explaining working of full wave rectifier 2 Drawing input and output wave forms 1 Centre-Tap Transformer		
	Diode $1(D_1)$ Centre A Tap B Diode $2(D_2)$ R_L Output	1	
	When input voltage at A with respect to the centre tap at any instant is positive, at that instant voltage at B, being out of phase will be negative,	1/2	

	during the positive half cycle diode D_1 gets forward biased and conducts while diode D_2 gets reverse biased and does not conduct. Hence during positive half cycle an output current and output voltage across R_L is obtained. During second half of the cycle when voltage at A becomes negative with respect to centre tap, the voltage at B would be positive hence D_1 would not conduct but D_2 would be giving an output current and output voltage. We get output voltage in both positive and negative half cycles.	1/2	
	ndno o	1	3
29.	(i) (B) The internal resistance of a cell decreases with the decrease in	1	-
	temperature of the electrolyte. (ii) (B) 2.8 V (iii) (A) $\varepsilon = V_+ + V > 0$ (iv) (a) (D) 0.2A	1 1	
	OR		
	(b) (A) 1.0Ω	1	4
30.	(i) Since no option is correct, award 1 mark to all students.	1	7
	(ii) (D) 800 nm (iii) (a) (A) $\frac{\sqrt{3}}{2}$	1	
	OR		
	(b) (B) $\sin^{-1}\left(\frac{4}{5}\right)$	1	
	(iv) (A) $\sin^{-1} \sqrt{n^2 - 1}$	1	4
31.	(a) (i) Obtaining expression for electric potential 3 (ii) Finding the value of n 2	-	-
	(i)		
	$a \theta 0$ $a \theta $	1/2	
	Potential due to the dipole is the sum of potentials due to charges q and -q		
		1/2	

55/2/1 Page **10** of **16**

$V = \frac{1}{4\pi\varepsilon_0} \left(\frac{q}{r_1} - \frac{q}{r_2} \right) (1)$		
By geometry $r_1^2 = r^2 + a^2 - 2ar\cos\theta$	1/2	
$\begin{vmatrix} r_1 = r + a - 2ar\cos\theta \\ r_2^2 = r^2 + a^2 + 2ar\cos\theta \end{vmatrix}$		
For $r >> a$, retaining terms only up to first order in a/r		
$r_1^2 = r^2 \left(1 - \frac{2a\cos\theta}{r} + \frac{a^2}{r^2} \right)$		
$\cong r^2 \left(1 - \frac{2a\cos\theta}{r} \right)$		
Similarly	1/2	
$r^2 = r^2 \left(1 + \frac{2a\cos\theta}{r}\right)$		
Using the binomial theorem and retaining terms up to the first order in a/r		
$\frac{1}{r} \approx \frac{1}{r} \left(1 - \frac{2a\cos\theta}{r} \right)^{-1/2}$		
$\cong \frac{1}{r} \left(1 + \frac{a \cos \theta}{r} \right) \qquad(2)$		
$\frac{1}{r_2} \cong \frac{1}{r} \left(\frac{1 + 2a\cos\theta}{r} \right)^{-1/2} \qquad(3)$	1/2	
$\cong \frac{1}{r} \left(1 - \frac{a \cos \theta}{r} \right)$		
Using eqn. (1) (2), (3) and $p = 2qa$		
$V = \frac{q}{4\pi\varepsilon_0} \frac{2a\cos\theta}{r^2}$	1/	
	1/2	
$=\frac{p\cos\theta}{4\pi\varepsilon_0 r^2}$		
Alternatively –		
2//		
D /r2	1/2	
$\frac{\mathbf{q}}{\mathbf{A}} = \frac{\mathbf{O}}{\mathbf{A}} = \frac{\mathbf{O}}{\mathbf{B}} + \mathbf{q}$		
← 2a →		
$r_2 = r + a\cos\theta$	1/2	
$r_1 = r - a\cos\theta$		
$V = \frac{q}{4\pi\varepsilon_0} \left(\frac{1}{r_1} - \frac{1}{r_2} \right)$		
* \ \ /	1/2	
$V = \frac{q}{4\pi\varepsilon_0} \left(\frac{1}{r - a\cos\theta} - \frac{1}{r + a\cos\theta} \right)$		
$= \frac{q}{4\pi\varepsilon_0} \left(\frac{2a\cos\theta}{r^2 - a^2\cos^2\theta} \right)$	1/2	
$4\pi\varepsilon_0 \left(r^2 - a^2 \cos^2 \theta \right)$		
	1/2	
	· -	

$=\frac{p}{4\pi\varepsilon}$	$\frac{1}{1-\frac{a^2}{r^2}\cos^2\theta}$	1/2	
For r	>>a, neglecting $\frac{a^2}{r^2}$		
	$\frac{P\cos\theta}{4\pi\varepsilon_0 r^2}$	1/2	
	onsider the side of equilateral triangle as 'a'		
Poten	tial energy = U= $\frac{kq_1q_2}{a} + \frac{kq_2q_3}{a} + \frac{kq_1q_3}{a}$	1/2	
	rding to question	, 2	
	$\frac{k(q)(2q)}{a} + \frac{k(2q)(nq)}{a} + \frac{k(q)(nq)}{a} = 0$	17	
		1/2	
=	$=\frac{2q^2}{q}+\frac{2nq^2}{q}+\frac{nq^2}{q}=0$		
	$a \qquad a \qquad a \qquad 2 + 2n + n = 0$	1/2	
	3n = -2		
	$n=-\frac{2}{3}$		
	OR		
	(i) Statement of Gauss's Law 1		
(b)	Obtaining expression for electric field 2		
	(ii) Finding net force on electron 2		
charg Alter The s	ectric Flux through a closed surface is equal to $\frac{q}{\varepsilon_0}$, where q is the total e enclosed by the surface. $\phi = \frac{q}{\varepsilon_0}$ matively urface integral of electric field over a closed surface is $\frac{1}{\varepsilon_0}$ times the total e enclosed by the surface.		
_	•		
$\oint \vec{E} \cdot d\vec{s}$	${\cal E}_0$		
(Awa	rd ½ mark for writing the formula only.)		
E	Surface charge density σ y x	1/2	
	ssian surface can be cylindrical also)		
	en from figure, only two faces 1 and 2 will contribute to the flux. \vec{E} . ds through both the surfaces is equal and add up.	1/2	
TTUX	Lus unough bout the suffaces is equal and add up.		1

	The charge enclosed by surface is σA , where σ is surface charge density		
	According to Gauss's theorem	1/2	
	$2EA = \sigma A / \varepsilon_0$ $E = \sigma / 2\varepsilon_0$	72	
	·		
	$\vec{E} = \frac{\sigma}{2\pi} \hat{n}$ where \hat{n} is unit vector directed normally out of the plane	1/2	
	$2arepsilon_0$		
	(ii) $\vec{E} = \frac{\lambda}{2\pi\varepsilon_0 r} \hat{r}$ According to question $E_1 \text{ (at point P)} = \frac{\lambda_1}{2\pi\varepsilon_0 r_1}$ $\vec{E} = \frac{10 \times 10^{-6}}{2\pi\varepsilon_0 (10 \times 10^{-2})} (-\hat{j}) \ N/C$ $E_2 \text{ (at point P)} = \frac{\lambda_2}{2\pi\varepsilon_0 r_2}$ $\vec{E} = \frac{20 \times 10^{-6}}{2\pi\varepsilon_0 (20 \times 10^{-2})} (-\hat{j}) \ N/C$ $E_{net} = \frac{10 \times 10^{-6}}{2\pi\varepsilon_0} \left(\frac{1}{0.1} + \frac{2}{0.2}\right) (-\hat{j}) \ N/C$	1/2	
	$=3.6\times10^6 \ (-\hat{j}) \ N/C$	1/2	
	$\vec{F}_{net} = q \times \vec{E}_{net}$,-	
	$\vec{F} = -1.6 \times 10^{-19} \times 3.6 \times 10^{6} (-\hat{j}) N$		
			_
32.	$=5.76\times10^{-13}N(\hat{j})$	1/2	5
32.	(a) (i) Showing helical path 1½ Obtaining frequency of revolution 1½ (ii) Finding magnetic moment of electron 2		
	z pitch radius	1/2	
	$v_{\perp} = v \sin \theta$ is perpendicular to \vec{B} and		
	$ \mathbf{v}_{\parallel} = \mathbf{v} \cos \theta$ is parallel to $\vec{\mathbf{B}}$		
	Due to v_{\perp} the charge describes circular path and v_{\parallel} pushes it in the direction		
	of \vec{B} . Therefore under the combined effect of two components the charged	1	
	particle describes helical path, as shown in the figure.	1	
	The centripetal force		

55/2/1 Page **13** of **16**

$\left \frac{m v_{\perp}^2}{r} = B \ q v_{\perp} \right $	1/2	
$v_{\perp} = \frac{Bqr}{m} \qquad (v_{\perp} = v \sin \theta)$	1/2	
Time period = $T = \frac{2\pi r}{v}$		
Y±		
$=\frac{2\pi m}{Bq}$		
$frequency v = \frac{1}{T} = \frac{Bq}{2\pi m}$	1/2	
$T = 2\pi m$		
(ii) Magnetic moment $m = I A$		
$I = \frac{e}{T} = ev$	1/2	
$=1.6\times10^{-19}\times8\times10^{14}$		
$=1.28\times10^{-4}A$	$\frac{1/2}{1/2}$	
$M = 1.28 \times 10^{-4} \times 3.14 \times (2 \times 10^{-10})^{2}$ = 5.12\pi \times 10^{-24} Am^{2} = 1.6 \times 10^{-23} Am^{2}	1/2	
OR		
(i) Definition of current sensitivity 1		
(i) Definition of current sensitivity 1 Showing dependence of current sensitivity & explanation 1+1		
(ii) Calculation of resistance		
(i) Deflection produced per unit current is called its current consitivity		
(i) Deflection produced per unit current is called its current sensitivity. θ NBA	1	
$I_{S} = \frac{\theta}{I} = \frac{NBA}{K}$		
Current sensitivity can be increased by (a) increasing number of turns in coil		
(b) increasing area of coil in magnetic field	1	
(c) decreasing K (Torsional Constant)		
(any one)		
$V_{s} = \frac{\theta}{V} = \frac{NBA}{KR}$		
If current sensitivity is increased by increasing number of turns of the coil, the resistance of the galvanometer will also increase. Thus voltage sensitivity	1	
may not increase.		
(ii) $V = I_G(R+G)$		
$R = \frac{V}{I_G} - G$	1/2	
· · · · · · · · · · · · · · · · · · ·		
$=\frac{100}{20\times10^{-3}}-15$	1/2	
=5000-15 = 4985Ω	1/	
By connecting 4985Ω in series with galvanometer it is converted to voltmeter	1/2	
of range (0-100V)	1/2	5
		l

	i) Intensity distribution graph	1	
(i:	ii) Finding intensity of light	2	
i)			
	Interference	Diffraction	
1	Bands are equally spaced	Bands are not equally spaced.	
2	Intensity of bright bands is same.	Intensity of maxima decreases on either side of central maxima.	1+1
3	First maxima is at an angle λ / a	First minima is at an angle λ/a	
(ii)	J _{Imax} 3λ 2λ 1λ Ο 1λ 2λ 3	3λ	1
	_	➤ Path differnce	
(iii)	Path	difference $(\Delta) = \lambda$	
	$\phi = rac{2\pi\Delta}{\lambda}$		
	$\phi = 2\pi$		1/2
	$I = 4I_0 \cos^2 \frac{\phi}{2}$		
	$K = 4I_0 \cos^2 \pi = 4I_0$		1/2
	Path difference = $\frac{\lambda}{6}$		72
	$\phi = \pi / 3$		1/2
	$I = 4I_0 \cos^2 \frac{\pi}{6}$		
	$= 4I_0 \times \frac{3}{4}$ $= \frac{3}{4} K$		
	- T ₁₀ ^ 4		
	$=\frac{3}{4}$ K		1/2
	+		
a. \	Ol	R	
(b)			
(i)	•	1	
	Derivation of magnifying power	2	
	ii) Finding magnifying power	2	

(i) $ \begin{array}{c c} A & u \rightarrow f_0 \rightarrow f_$	1	
The magnification obtained by eye-piece lens $m_e = \left(1 + \frac{D}{f_e}\right)$	1/2	
The magnification obtained by objective lens $m_0 = \frac{v_0}{-u_0}$ Hence the total magnifying power is $m = m_0 \times m_e$	1/2	
$= \frac{v_0}{-u_0} \left(1 + \frac{D}{f_e} \right)$ $(ii) \mathbf{m} = \left \frac{f_0}{f} \right $	1/2	
Identification of focal length of objective and eyepiece $f_0 = 100cm$	1 1/2	
$f_e = 5cm$ $m = \left \frac{100}{5} \right = 20$	1/2	5

55/2/1 Page **16** of **16**

Marking Scheme Strictly Confidential (For Internal and Restricted use only) Senior School Certificate Examination, 2024

SUBJECT- PHYSICS (CODE 55/2/2)

General Instructions: -

- You are aware that evaluation is the most important process in the actual and correct assessment of the candidates. A small mistake in evaluation may lead to serious problems which may affect the future of the candidates, education system and teaching profession. To avoid mistakes, it is requested that before starting evaluation, you must read and understand the spot evaluation guidelines carefully.
- "Evaluation policy is a confidential policy as it is related to the confidentiality of the examinations conducted, Evaluation done and several other aspects. Its' leakage to public in any manner could lead to derailment of the examination system and affect the life and future of millions of candidates. Sharing this policy/document to anyone, publishing in any magazine and printing in News Paper/Website etc. may invite action under various rules of the Board and IPC."
- Evaluation is to be done as per instructions provided in the Marking Scheme. It should not be done according to one's own interpretation or any other consideration. Marking Scheme should be strictly adhered to and religiously followed. However, while evaluating, answers which are based on latest information or knowledge and/or are innovative, they may be assessed for their correctness otherwise and due marks be awarded to them. In class-X, while evaluating two competency-based questions, please try to understand given answer and even if reply is not from marking scheme but correct competency is enumerated by the candidate, due marks should be awarded.
- 4 The Marking scheme carries only suggested value points for the answers

These are in the nature of Guidelines only and do not constitute the complete answer. The students can have their own expression and if the expression is correct, the due marks should be awarded accordingly.

- The Head-Examiner must go through the first five answer books evaluated by each evaluator on the first day, to ensure that evaluation has been carried out as per the instructions given in the Marking Scheme. If there is any variation, the same should be zero after delibration and discussion. The remaining answer books meant for evaluation shall be given only after ensuring that there is no significant variation in the marking of individual evaluators.
- 6 Evaluators will mark ($\sqrt{\ }$) wherever answer is correct. For wrong answer CROSS 'X" be marked. Evaluators will not put right (\checkmark) while evaluating which gives an impression that answer is correct and no marks are awarded. This is most common mistake which evaluators are committing.
- If a question has parts, please award marks on the right-hand side for each part. Marks awarded for different parts of the question should then be totaled up and written in the left-hand margin and encircled. This may be followed strictly.
- 8 If a question does not have any parts, marks must be awarded in the left-hand margin and encircled. This may also be followed strictly.
- 9 If a student has attempted an extra question, answer of the question deserving more marks should be

55/2/2 Page **1** of **16**

	retained and the other answer scored out with a note "Extra Question".
10	
10	No marks to be deducted for the cumulative effect of an error. It should be penalized only once.
11	A full scale of marks $0-70$ has to be used. Please do not hesitate to award full marks if the answer deserves it.
12	Every examiner has to necessarily do evaluation work for full working hours i.e., 8 hours every day and evaluate 20 answer books per day in main subjects and 25 answer books per day in other subjects (Details are given in Spot Guidelines). This is in view of the reduced syllabus and number of questions in question paper.
13	Ensure that you do not make the following common types of errors committed by the Examiner in the past:-
14	 Leaving answer or part thereof unassessed in an answer book. Giving more marks for an answer than assigned to it. Wrong totaling of marks awarded on an answer. Wrong transfer of marks from the inside pages of the answer book to the title page. Wrong question wise totaling on the title page. Wrong totaling of marks of the two columns on the title page. Wrong grand total. Marks in words and figures not tallying/not same. Wrong transfer of marks from the answer book to online award list. Answers marked as correct, but marks not awarded. (Ensure that the right tick mark is correctly and clearly indicated. It should merely be a line. Same is with the X for incorrect answer.) Half or a part of answer marked correct and the rest as wrong, but no marks awarded. While evaluating the answer books if the answer is found to be totally incorrect, it should be marked as cross (X) and awarded zero (0)Marks.
15	Any unassessed portion, non-carrying over of marks to the title page, or totaling error detected by the candidate shall damage the prestige of all the personnel engaged in the evaluation work as also of the Board. Hence, in order to uphold the prestige of all concerned, it is again reiterated that the instructions be followed meticulously and judiciously.
16	The Examiners should acquaint themselves with the guidelines given in the "Guidelines for Spot Evaluation" before starting the actual evaluation.
17	Every Examiner shall also ensure that all the answers are evaluated, marks carried over to the title page, correctly totaled and written in figures and words.
18	The candidates are entitled to obtain photocopy of the Answer Book on request on payment of the prescribed processing fee. All Examiners/Additional Head Examiners/Head Examiners are once again reminded that they must ensure that evaluation is carried out strictly as per value points for each answer as given in the Marking Scheme.

55/2/2 Page **2** of **16**

	MARKING SCHEME: PHYSICS (042)		
O N -	CODE: 55/2/2	MADIZO	ТОТАТ
Q.No	VALUE POINTS/EXPECTED ANSWERS	MARKS	TOTAL MARKS
	SECTION -A		
1.	$C \subset C$	1	1
	(C) $\frac{C}{4}$		
2.	(A) $\frac{\mathbf{v}_d}{2}$	1	1
3.	(D) $\varepsilon_1 > \varepsilon_3 > \varepsilon_2$	1	1
4.	(C) 31.4µWb	1	1
5.	(D) Magnetic Flux and Power both	1	1
6.	(A) $\frac{10^5}{4\pi}$ Hz (B) Ultraviolet rays	1	1
7.	(B) Ultraviolet rays	1	1
8.	(D) 2.14 e V	1	1
9.	$(\mathbf{B})\frac{1}{\lambda_1} + \frac{1}{\lambda_2} = \frac{1}{\lambda_3}$	1	1
10.	(C) $\frac{1}{K}$	1	1
11.	(C) P	1	1
12.	(B) The barrier height increases and the depletion region widens.	1	1
13.	(C) Assertion (A) is true, but Reason (R) is false	1	1
14.	(A) Both Assertion (A) and Reason (R) are true and Reason(R) is the correct explanation of the Assertion (A)	1	1
15.	(B) Both Assertion (A) and Reason (R) are true but Reason(R) is not the correct explanation of the Assertion (A)	1	1
16.	(A) Both Assertion (A) and Reason (R) are true and Reason(R) is the correct explanation of the Assertion (A)	1	1
	SECTION – B	•	•
17	(a) Explanation 1 (b) Explanation 1		
	(a) Electric field is established throughout the circuit, almost instantly. It causes a local electron drift at every point, thus establishment of current does not have to wait for electrons from one end of the conductor to travel to other end.	1	
	(b) Ohm's law asserts that the plot of I versus V is linear i.e. R is independent of V, while equation V=IR defines resistance and it may be applied to all conducting devices whether they obey Ohm's law or not.	1	2
18	Finding focal length Nature of the lens 1 ½ 1/2		

55/2/2 Page **3** of **16**

	For convex lens in air		
	$1 (n_g 1) (1 1)$		
	$\frac{1}{f_a} = \left(\frac{n_g}{n_a} - 1\right) \left(\frac{1}{R_1} - \frac{1}{R_2}\right)$		
	For convex lens in liquid.		
		1/2	
	$\frac{1}{f_l} = \left(\frac{n_g}{n_l} - 1\right) \left(\frac{1}{R_1} - \frac{1}{R_2}\right)$	7/2	
	1.52 – 1		
	$\frac{f_l}{f_a} = \frac{1}{1.52 - 1.65}$	1/2	
	$f_a = \frac{1.52 - 1.65}{1.65}$		
	= - 6.6		
	$f_{l} = -6.6 f_{a}$	4.	
	= -99cm	1/2	
	Nature of the lens: Diverging/ behaves like a concave lens.	1/2	2
19.	(a)	/2	
	Obtaining expression for resultant intensity 2		
	$x_1 = a\cos\omega t$		
	$x_2 = a\cos(\omega t + \phi)$	1/2	
	$x = x_1 + x_2$		
	$= a(\cos\omega t + \cos(\omega t + \phi))$		
	$= a(2\cos(\omega t + \frac{\phi}{2})\cos\frac{\phi}{2})$		
	$=2a\cos\frac{\phi}{2}\cos(\omega t + \frac{\phi}{2})$	1/2	
	Intensity 2 2	, 2	
	$I = K \text{ (amplitude)}^2$ where K is a constant.		
	,	1/2	
	$=K(2a\cos\frac{\phi}{2})^2$		
	$=4I_0\cos^2\frac{\phi}{2}$	1/2	
	$I_0 = Ka^2 = \text{intensity of each incident wave.}$	/2	
	(Award full credit of this part for all other alternative correct methods)		
	OR		
	(b) Effect and justification		
	(i) Source slit moved closer to plane of slits 1		
	(ii) Separation between two slits		
	(.,,		
	(i)Sharpness of interference pattern decreases		
	$\frac{s}{S} < \frac{\lambda}{d}$	_	
	As S decreases, interference patterns produced by different parts of the source	1	
	overlap and finally fringes disappear.		
	Alternatively		
	As the source slit is brought closer to the plane of the slits, the screen gets		
	illuminated uniformly and fringes disappear.		

55/2/2 Page **4** of **16**

	Alternatively Interference pattern is not formed.		
	(Note: Award full credit of this part if a student merely attempts this part.)		
	(ii) $\beta = \frac{\lambda D}{d}$	1/2	
	As d increases, β decreases and fringes disappear.	1/2	2
20.	Calculating energy released/ absorbed 2		
	Energy = mass defect x 931 Mev Mass defect = $\Delta m = (2 \times 12.000000 - 19.992439 - 4.002603)$	1/2	
	= 0.004958u Energy released = 0.004958 x 931 MeV = 4.62 MeV	1/ ₂ 1/ ₂ 1/ ₂	2
21.	Effect on energy gap and justification (i) Trivalent impurity (ii) Pentavalent impurity $\frac{1}{2} + \frac{1}{2}$		
	(i) Decreases Justification: An acceptor energy level is formed just above the top of the	1/2	
	valence band.	1/2	
	(ii) Decreases Justification: A donor level is formed just below the bottom of conduction band.	1/2	
	Alternatively E_{C} $z_{0.01eV}$ E_{V} E_{V} $z_{0.01} - 0.05 \text{ eV}$	1/2	2
	(Note: Award the credit of justification if a student draws band diagram)		
	SECTION-C		
22.	(a) Factors affecting speed of Electromagnetic wave1(b) Production of Electromagnetic wave1(c) Sketch of Electromagnetic wave1		
	(a) Speed of EM waves $v = \frac{1}{\sqrt{\mu \varepsilon}}$		
	Speed depends upon		

55/2/2 Page **5** of **16**

	(i) Permittivity (ε) of medium		
	(ii) Magnetic permeability (μ) of medium	$\frac{1}{2} + \frac{1}{2}$	
	(b) Accelerated charges or oscillating charges produce electromagnetic waves(c) x	1	
	y E z	1	3
23.			
	Finding magnitude and direction of current in AG, BF and CD $1+1+1$ $ \begin{array}{cccccccccccccccccccccccccccccccccc$	1/2	
	By Kirchoff's Laws (at point B) $I_1 + I_2 = I_3 \qquad(1)$ In the closed loop AGFBA $3 + 2I_3 - 6 + 4I_2 + 2I_3 = 0$	1/2	
	$I_2 + I_3 = \frac{3}{4}$ (2) From (i)	1/2	
	$2I_1 + I_2 = \frac{3}{4}$ (3) In closed loop BFDCB - $4I_2 + 6 + 2I_1 - 6 + 2I_1 = 0$	1/2	
	$I_2 - I_1 = 0$ $I_2 = I_1$ (4) Putting in (3)	1/2	
	$I_1 = \frac{1}{4}A$ From (4) $I_2 = \frac{1}{4}A$		
	From (2) $I_3 = \frac{1}{2}A$	1/2	3

55/2/2 Page **6** of **16**

	T		<u> </u>
24.	(a) Plotting graph (b) Finding magnetic flux (c) Requirement of external work 1½ 1/2		
	(a)		
	2.0 AO 60 BO 105 120 X	1 1/2	
	(b) $\phi = B.A$	1/2	
	$=5\times10^{-3}\times20\times10^{-2}\times10\times10^{-2}$	1/	
	$= 10^{-4}Wb$ (c) Yes, external work is required.	1/ ₂ 1/ ₂	3
25.	Explaining nature of force Obtaining expression of force Defining one ampere Nature of force is repulsive.	1/2	
	Magnetic field due to current I_a at all points of conductor b $B_{ab} = \frac{\mu_0 I_a}{2\pi d} \text{directed downwards}$ Force experienced by conductor b on its segment of length l $F_{ab} = I_b l B_{ab}$ $= \frac{\mu_0 I_a I_b}{2\pi d} l \text{directed towards left}$	1/2	
	Similarly Force experienced by conductor a on its segment of length l		

55/2/2 Page **7** of **16**

$F_{ba} = \frac{\mu_0 I_a I_b}{2\pi d} l$ directed towards ri	ight		
1	hich when maintained in each of two very negligible cross-section, placed one metre $2x10^{-7}$ N/m on each conductor.	1	
	OR		
Obtaining expression of torce Drawing diagram	que 2		
Drawing diagram B B C A B S	F ₂	1	
Forces on arm BC and DA are equal the coil. Being collinear they cancel	l and opposite and act along the axis of each other.	1/2	
Forces on arms AB and CD are equations a couple. $F_1 = F_2 = IbB$	al and opposite but not collinear. They	1/2	
$\tau = F_1 \frac{a}{2} \sin \theta + F_2 \frac{a}{2} \sin \theta$		1/2	
$\tau = IabB \sin \theta$ $\tau = IAB \sin \theta$ (where A = $\vec{\tau} = \vec{m} \times \vec{B}$	= ab & m = IA)	1/2	3
conditions. The wave length λ associated with a $\lambda = \frac{\lambda}{\lambda}$	velength ootential difference 1	1 1/2	

	$=2\sqrt{2}$	1/2	
	$= 2\sqrt{2}$ (ii) $\lambda = \frac{h}{\sqrt{2mK}}$	1/2	
	$\frac{\lambda_p}{\lambda_\alpha} = \frac{\sqrt{2 \times 4m_p \times K}}{\sqrt{2 \times m_p \times K}}$ $= 2$	1/2	3
27.	(a) Plotting graph (b) Identifying and justifying regions i) Attracting nuclear force ii) Repulsive nuclear force (a) (b) Identifying and justifying regions i) Attracting nuclear force $\frac{1}{2} + \frac{1}{2}$ ii) Repulsive nuclear force (a) (b) F = $-\frac{dU}{dx}$	1	
	i) For distance larger than r _o , force is attractive	1/2	
	Since slope of the curve is positive	1/2	
	ii) For distance less than r _o , force is repulsive	1/2	
	Since slope of the curve is negative	1/2	3
28.	Explaining working of full wave rectifier 2 Drawing input and output wave forms 1		

55/2/2 Page **9** of **16**

	Centre-Tap Transformer Diode 1(D ₁) Centre A Tap Diode 2(D ₂) R _L Output	1	
	When input voltage at A with respect to the centre tap at any instant is positive, at that instant voltage at B, being out of phase will be negative, during the positive half cycle diode D_1 gets forward biased and conducts while diode D_2 gets reverse biased and does not conduct. Hence during positive half cycle an output current and output voltage across R_L is obtained.	1/2	
	During second half of the cycle when voltage at A becomes negative with respect to centre tap, the voltage at B would be positive hence D ₁ would not conduct but D ₂ would be giving an output current and output voltage. We get output voltage in both positive and negative half cycles.	1/2	
	Maveform at B (across R ₂) Due to Dane to Da	1	3
29	(i) Since no option is correct, award 1 mark to all students. (ii) (D) 800 nm (iii) (a) (A) $\frac{\sqrt{3}}{2}$	1 1	
	(b) (B) $\sin^{-1}\left(\frac{4}{5}\right)$	1	
	(iv) (A) $\sin^{-1} \sqrt{n^2 - 1}$	1	4
30	 (i) (B) The internal resistance of a cell decreases with the decrease in temperature of the electrolyte. (ii) (B) 2.8 V (iii) (A) ε=V₊+V₋ > 0 	1 1 1	
	(iv) (a) (D) $0.2A$ (b) (A) 1.0Ω OR	1	4

55/2/2 Page **10** of **16**

(a)	(i) Two differences between into	aufaranaa nattarn and	
	(i) Two differences between inte		
	diffraction pattern	2	
	(ii) Intensity distribution graph	1	
	(iii) Finding intensity of light	2	
(*)			
(i)			
	Interference	Diffraction	
1	Bands are equally spaced	Bands are not equally spaced.	
2	Intensity of bright bands are	Intensity of maxima decreases on	
	same.	either side of central maxima.	1+1
3	First maxima is at an angle λ/a	First minima is at an angle λ/a	
	1 1130 114411114 13 40 411 411 910 107 41	I have himmen to we will unight with a	
	I		
(ii)			
	∧ ∧ ∧ ∧ // I _{max}	۸ ۸	1
	/\/\\/\\/\/	\/\	1
	3λ 2λ 1λ Ο 1λ 2	λ 3λ	
	-	→ Path differnce	
,			
(111) Path difference $(\Lambda) = \lambda$		
(111)	Path difference $(\Delta) = \lambda$		
(111)			1/2
(111)	$\phi = \frac{2\pi\Delta}{\lambda}$		1/2
(111)	$\phi = rac{2\pi\Delta}{\lambda} \ \phi = 2\pi$		1/2
(111)	$\phi = \frac{2\pi\Delta}{\lambda}$ $\phi = 2\pi$ $I = 4I_0 \cos^2 \frac{\phi}{2}$		1/2
(111)	$\phi = \frac{2\pi\Delta}{\lambda}$ $\phi = 2\pi$ $I = 4I_0 \cos^2 \frac{\phi}{2}$ $K = 4I_0 \cos^2 \pi = 4I_0$		
(111)	$\phi = \frac{2\pi\Delta}{\lambda}$ $\phi = 2\pi$ $I = 4I_0 \cos^2 \frac{\phi}{2}$ $K = 4I_0 \cos^2 \pi = 4I_0$		1/2
(111	$\phi = \frac{2\pi\Delta}{\lambda}$ $\phi = 2\pi$ $I = 4I_0 \cos^2 \frac{\phi}{2}$ $K = 4I_0 \cos^2 \pi = 4I_0$ Path difference $=\frac{\lambda}{6}$		
(111)	$\phi = \frac{2\pi\Delta}{\lambda}$ $\phi = 2\pi$ $I = 4I_0 \cos^2 \frac{\phi}{2}$ $K = 4I_0 \cos^2 \pi = 4I_0$ Path difference = $\frac{\lambda}{6}$ $\phi = \pi/3$		
(111)	$\phi = \frac{2\pi\Delta}{\lambda}$ $\phi = 2\pi$ $I = 4I_0 \cos^2 \frac{\phi}{2}$ $K = 4I_0 \cos^2 \pi = 4I_0$ Path difference = $\frac{\lambda}{6}$ $\phi = \pi/3$		1/2
(111)	$\phi = \frac{2\pi\Delta}{\lambda}$ $\phi = 2\pi$ $I = 4I_0 \cos^2 \frac{\phi}{2}$ $K = 4I_0 \cos^2 \pi = 4I_0$ Path difference = $\frac{\lambda}{6}$ $\phi = \pi/3$ $I = 4I_0 \cos^2 \frac{\pi}{6}$		
(111)	$\phi = \frac{2\pi\Delta}{\lambda}$ $\phi = 2\pi$ $I = 4I_0 \cos^2 \frac{\phi}{2}$ $K = 4I_0 \cos^2 \pi = 4I_0$ Path difference = $\frac{\lambda}{6}$ $\phi = \pi/3$		1/2
(111)	$\phi = \frac{2\pi\Delta}{\lambda}$ $\phi = 2\pi$ $I = 4I_0 \cos^2 \frac{\phi}{2}$ $K = 4I_0 \cos^2 \pi = 4I_0$ Path difference $=\frac{\lambda}{6}$ $\phi = \pi/3$ $I = 4I_0 \cos^2 \frac{\pi}{6}$ $= 4I_0 \times \frac{3}{4}$		1/2
(111)	$\phi = \frac{2\pi\Delta}{\lambda}$ $\phi = 2\pi$ $I = 4I_0 \cos^2 \frac{\phi}{2}$ $K = 4I_0 \cos^2 \pi = 4I_0$ Path difference = $\frac{\lambda}{6}$ $\phi = \pi/3$ $I = 4I_0 \cos^2 \frac{\pi}{6}$	R	1/2
(111 ₂	$\phi = \frac{2\pi\Delta}{\lambda}$ $\phi = 2\pi$ $I = 4I_0 \cos^2 \frac{\phi}{2}$ $K = 4I_0 \cos^2 \pi = 4I_0$ Path difference $= \frac{\lambda}{6}$ $\phi = \pi/3$ $I = 4I_0 \cos^2 \frac{\pi}{6}$ $= 4I_0 \times \frac{3}{4}$ $= \frac{3}{4}K$ OI	R	1/2
	$\phi = \frac{2\pi\Delta}{\lambda}$ $\phi = 2\pi$ $I = 4I_0 \cos^2 \frac{\phi}{2}$ $K = 4I_0 \cos^2 \pi = 4I_0$ Path difference $= \frac{\lambda}{6}$ $\phi = \pi/3$ $I = 4I_0 \cos^2 \frac{\pi}{6}$ $= 4I_0 \times \frac{3}{4}$ $= \frac{3}{4}K$ OI	R	1/2
	$\phi = \frac{2\pi\Delta}{\lambda}$ $\phi = 2\pi$ $I = 4I_0 \cos^2 \frac{\phi}{2}$ $K = 4I_0 \cos^2 \pi = 4I_0$ Path difference = $\frac{\lambda}{6}$ $\phi = \pi/3$ $I = 4I_0 \cos^2 \frac{\pi}{6}$ $= 4I_0 \times \frac{3}{4}$ $= \frac{3}{4}K$ OI		1/2
	$\phi = \frac{2\pi\Delta}{\lambda}$ $\phi = 2\pi$ $I = 4I_0 \cos^2 \frac{\phi}{2}$ $K = 4I_0 \cos^2 \pi = 4I_0$ Path difference $= \frac{\lambda}{6}$ $\phi = \pi/3$ $I = 4I_0 \cos^2 \frac{\pi}{6}$ $= 4I_0 \times \frac{3}{4}$ $= \frac{3}{4} \text{ K}$ OI	1	1/2
	$\phi = \frac{2\pi\Delta}{\lambda}$ $\phi = 2\pi$ $I = 4I_0 \cos^2 \frac{\phi}{2}$ $K = 4I_0 \cos^2 \pi = 4I_0$ Path difference = $\frac{\lambda}{6}$ $\phi = \pi/3$ $I = 4I_0 \cos^2 \frac{\pi}{6}$ $= 4I_0 \times \frac{3}{4}$ $= \frac{3}{4}K$ OI	1	1/2

	(i)		
	A B B O B K Eyepiece Objective A B	1	
	The magnification obtained by eye-piece lens $m_e = \left(1 + \frac{D}{f_e}\right)$	1/2	
	The magnification obtained by objective lens $m_0 = \frac{v_0}{-u_0}$ Hence the total magnifying power is	1/2	
	$m = m_0 \times m_e$	1/2	
	$=\frac{v_0}{-u_0}\left(1+\frac{D}{f_e}\right)$	1/2	
	$(ii) \mathbf{m} = \left \frac{f_0}{f_e} \right $	1	
	Identification of focal length of objective and eyepiece $f_0 = 100cm$ $f_e = 5cm$	1/2	
	$m = \left \frac{100}{5} \right = 20$	1/2	5
32.	(a) (i) Obtaining expression for electric potential 3 (ii) Finding the value of n 2		
	(i) $ \begin{array}{c} q \\ $		
	a	1/2	
	Potential due to the dipole is the sum of potentials due to charges q and -q $V = \frac{1}{4\pi\varepsilon_0} \left(\frac{q}{r_1} - \frac{q}{r_2} \right) \qquad$	1/2	
	For $r >> a$, retaining terms only up to first order in a/r	1/2	

55/2/2 Page **12** of **16**

$r_1^2 = r^2 \left(1 - \frac{2a\cos\theta}{r} + \frac{a^2}{r^2} \right)$	
$\cong r^2 \left(1 - \frac{2a\cos\theta}{r} \right)$	
Similarly	
$r_2^2 \cong r^2 \left(1 + \frac{2a\cos\theta}{r} \right)$	
Using the binomial theorem and retaining terms up to the first order in a/r	
$\frac{1}{r_1} \cong \frac{1}{r} \left(1 - \frac{2a\cos\theta}{r} \right)^{-1/2}$	
$\cong \frac{1}{r} \left(1 + \frac{a \cos \theta}{r} \right) \qquad(2)$	
$\frac{1}{r_2} \cong \frac{1}{r} \left(\frac{1 + 2a\cos\theta}{r} \right)^{-1/2} \qquad(3)$	
1/	
$\cong \frac{1}{r} \left(1 - \frac{a \cos \theta}{r} \right)$	
Using eqn. (1) (2), (3) and $p = 2qa$	
$V = \frac{q}{4\pi\varepsilon_0} \frac{2a\cos\theta}{r^2}$	
$=\frac{p\cos\theta}{4\pi\varepsilon_0 r^2}$	
$4\pi \varepsilon_0 r^2$	
Alternatively – P(r,θ)	
3//	
D / /2	
A e B+q	
$r_2 = r + a\cos\theta$ $r_2 = r + a\cos\theta$ $r_3 = r + a\cos\theta$	
$r_1 = r - a\cos\theta$ $a (1 1)$	
$V = \frac{q}{4\pi\varepsilon_0} \left(\frac{1}{r_1} - \frac{1}{r_2} \right)$	
$V = \frac{q}{4\pi\varepsilon_0} \left(\frac{1}{r - a\cos\theta} - \frac{1}{r + a\cos\theta} \right)$	
$=\frac{q}{4\pi\varepsilon_0}\left(\frac{2a\cos\theta}{r^2-a^2\cos^2\theta}\right)$	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$= \frac{p}{4\pi\varepsilon_0 r^2} \left(\frac{\cos\theta}{1 - \frac{a^2}{r^2} \cos^2\theta} \right)$	
$\left[1 - \frac{a^2}{r^2} \cos^2 \theta\right] $ 1/2	
For r>>a, neglecting $\frac{a^2}{r^2}$	
$V = \frac{P\cos\theta}{4\pi\varepsilon_0 r^2}$	
(ii) Consider the side of equilateral triangle as 'a'	

55/2/2 Page **13** of **16**

Potent	ial energy = U= $\frac{kq_1q_2}{q_1} + \frac{kq_2q_3}{q_2} + \frac{kq_1q_3}{q_3}$	1/2	
According to question			
		1/2	
U = -	$\frac{(q)(2q)}{a} + \frac{k(2q)(nq)}{a} + \frac{k(q)(nq)}{a} = 0$		
_	$\frac{2q^2}{a} + \frac{2nq^2}{a} + \frac{nq^2}{a} = 0$	1/2	
_			
	2 + 2n + n = 0		
	3n = -2	1/2	
	$n=-\frac{2}{3}$	72	
	OR		
(b)	(i) Statement of Gauss's Law 1		
	Obtaining expression for electric field 2		
	(ii) Finding net force on electron 2		
'			
(i) Ele	ctric Flux through a closed surface is equal to $\frac{q}{\varepsilon}$, where q is the total	1	
charge	e enclosed by the surface. $\phi = \frac{q}{\varepsilon_0}$		
Alteri	natively		
	urface integral of electric field over a closed surface is $\frac{1}{2}$ times the total		
THE SC	ϵ_0		
charge	enclosed by the surface.		
$\oint \vec{E}.d\vec{S}$	$=\frac{q}{q}$		
	U		
(Awar	d ½ marks for writing the formula only.)		
	Surface z charge density σ		
	y		
E	E		
	1 2 ×	1/2	
	← x → ← x →		
,	sian surface can be cylindrical also)	1/2	
	en from figure, only two faces 1 and 2 will contribute to the flux.	/2	
	\vec{E} .ds through both the surfaces is equal and add up. harge enclosed by surface is σA , where σ is surface charge density		
	ding to Gauss's theorem		
2EA =	-	1/2	
$E = \sigma$			
\vec{E}		1/2	
$\vec{E} = \frac{\vec{C}}{2}$	$\frac{\partial}{\varepsilon_0}\hat{n}$ where \hat{n} is unit vector directed normally out of the plane		
		1	

	(ii) $\vec{E} = \frac{\lambda}{2\pi\varepsilon_0 r} \hat{r}$		
	According to question		
	E_1 (at point P) = $\frac{\lambda_1}{2\pi\varepsilon_0 r_1}$		
	$\vec{E} = \frac{10 \times 10^{-6}}{2\pi\varepsilon_0 (10 \times 10^{-2})} \ (-\hat{j}) \ N/C$	1/2	
	$E_2 ext{ (at point P)} = \frac{\lambda_2}{2\pi\varepsilon_0 r_2}$		
	$\vec{E} = \frac{20 \times 10^{-6}}{2\pi \varepsilon_0 (20 \times 10^{-2})} (-\hat{j}) \ N/C$	1/2	
	$E_{net} = \frac{10 \times 10^{-6}}{2\pi \varepsilon_0} \left(\frac{1}{0.1} + \frac{2}{0.2} \right) \ (-\hat{j}) \ N / C$		
	$=3.6\times10^6 \ (-\hat{j}) \ N/C$	1/2	
	$ec{F}_{net} = q\! imes\!ec{E}_{net}$		
	$\vec{F} = -1.6 \times 10^{-19} \times 3.6 \times 10^{6} \ (-\hat{j}) \ N$		
	$=5.76\times10^{-13}N(\hat{j})$	1/2	5
33.	(a)		
	(i) Showing helical path 1 ½		
	Obtaining frequency of revolution 1 ½		
	(ii) Finding magnetic moment of electron 2		
	z pitch radius	1/2	
	$\mathbf{v}_{\perp} = \mathbf{v} \sin \theta$ is perpendicular to $\vec{\mathbf{B}}$ and		
	$\mathbf{v}_{\parallel} = \mathbf{v}\mathbf{cos}\boldsymbol{\theta}$ is parallel to $\vec{\mathbf{B}}$		
	Due to v_{\perp} the charge describes circular path and v_{\parallel} pushes it in the direction		
	of \vec{B} . Therefore under the combined effect of two components the charged particle describes helical path, as shown in the figure. The centripetal force	1	
	$\frac{mv_{\perp}^{2}}{r} = B qv_{\perp}$	1/2	
	$v_{\perp} = \frac{Bqr}{m} \qquad (v_{\perp} = v\sin\theta)$	1/2	
	Time period = $T = \frac{2\pi r}{v_{\perp}}$		

55/2/2 Page **15** of **16**

	T	
$=\frac{2\pi m}{Bq}$		
$frequency v = \frac{1}{T} = \frac{Bq}{2\pi m}$	1/2	
$T=2\pi m$	/2	
(ii) Magnetic moment $m = I A$		
$I = \frac{e}{T} = ev$		
T 10-19-10-10-14	1/2	
$=1.6\times10^{-19}\times8\times10^{14}$ =1.28×10 ⁻⁴ A	, -	
	1/2	
$M = 1.28 \times 10^{-4} \times 3.14 \times (2 \times 10^{-10})^{2}$	1/2	
$=5.12\pi \times 10^{-24} Am^2 = 1.6 \times 10^{-23} Am^2$ OR	1/2	
(b)		
(i) Definition of current sensitivity 1		
Showing dependence of current sensitivity & explanation 1+1		
(ii) Calculation of resistance 2		
(i) Deflection produced per unit current is called its current sensitivity.	1	
$I_S = \frac{\theta}{I} = \frac{NBA}{K}$		
Current sensitivity can be increased by		
(a) increasing number of turns in coil		
(b) increasing area of coil in magnetic field	1	
(c) decreasing <i>K</i> (Torsional Constant)	1	
(any one)		
$V_{s} = \frac{\theta}{V} = \frac{NBA}{KR}$		
If current sensitivity is increased by increasing number of turns of the coil, the		
resistance of the galvanometer will also increase. Thus voltage sensitivity	1	
may not increase.	_	
(ii) $V = I_G(R+G)$		
$R = \frac{V}{I_G} - G$		
	1/2	
$=\frac{100}{20\times10^{-3}}-15$		
	1/2	
= 5000 – 15	1/4	
= 4985Ω By connecting 4985Ω in series with galvanometer it is converted to voltmeter	1/2	
of range (0-100V)	1/2	5

55/2/2 Page **16** of **16**

Marking Scheme Strictly Confidential (For Internal and Restricted use only) Senior School Certificate Examination, 2024

SUBJECT-PHYSICS (CODE 55/2/3)

General Instructions: -

- You are aware that evaluation is the most important process in the actual and correct assessment of the candidates. A small mistake in evaluation may lead to serious problems which may affect the future of the candidates, education system and teaching profession. To avoid mistakes, it is requested that before starting evaluation, you must read and understand the spot evaluation guidelines carefully.
- 2 "Evaluation policy is a confidential policy as it is related to the confidentiality of the examinations conducted, Evaluation done and several other aspects. Its' leakage to public in any manner could lead to derailment of the examination system and affect the life and future of millions of candidates. Sharing this policy/document to anyone, publishing in any magazine and printing in News Paper/Website etc. may invite action under various rules of the Board and IPC."
- Evaluation is to be done as per instructions provided in the Marking Scheme. It should not be done according to one's own interpretation or any other consideration. Marking Scheme should be strictly adhered to and religiously followed. However, while evaluating, answers which are based on latest information or knowledge and/or are innovative, they may be assessed for their correctness otherwise and due marks be awarded to them. In class-X, while evaluating two competency-based questions, please try to understand given answer and even if reply is not from marking scheme but correct competency is enumerated by the candidate, due marks should be awarded.
- 4 The Marking scheme carries only suggested value points for the answers

These are in the nature of Guidelines only and do not constitute the complete answer. The students can have their own expression and if the expression is correct, the due marks should be awarded accordingly.

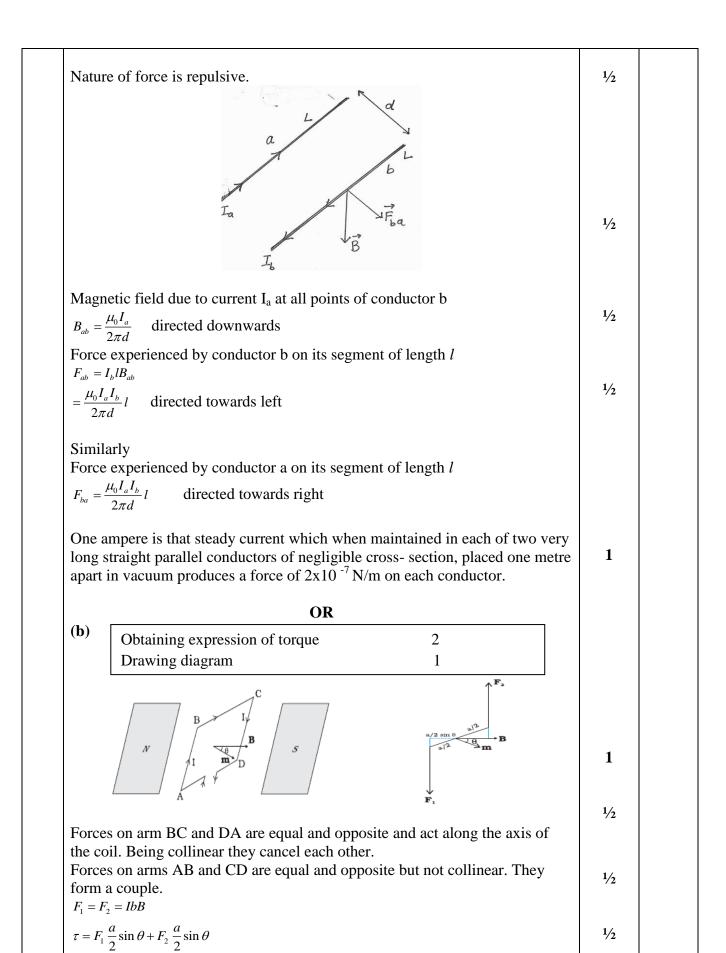
- The Head-Examiner must go through the first five answer books evaluated by each evaluator on the first day, to ensure that evaluation has been carried out as per the instructions given in the Marking Scheme. If there is any variation, the same should be zero after delibration and discussion. The remaining answer books meant for evaluation shall be given only after ensuring that there is no significant variation in the marking of individual evaluators.
- Evaluators will mark ($\sqrt{\ }$) wherever answer is correct. For wrong answer CROSS 'X" be marked. Evaluators will not put right (\checkmark) while evaluating which gives an impression that answer is correct and no marks are awarded. **This is most common mistake which evaluators are committing.**
- If a question has parts, please award marks on the right-hand side for each part. Marks awarded for different parts of the question should then be totaled up and written in the left-hand margin and encircled. This may be followed strictly.
- 8 If a question does not have any parts, marks must be awarded in the left-hand margin and encircled. This may also be followed strictly.
- 9 If a student has attempted an extra question, answer of the question deserving more marks should be

55/2/3 Page **1** of **16**

	retained and the other answer scored out with a note "Extra Question".
10	No marks to be deducted for the cumulative effect of an error. It should be penalized only once.
11	A full scale of marks $0-70$ has to be used. Please do not hesitate to award full marks if the answer deserves it.
12	Every examiner has to necessarily do evaluation work for full working hours i.e., 8 hours every day and evaluate 20 answer books per day in main subjects and 25 answer books per day in other subjects (Details are given in Spot Guidelines). This is in view of the reduced syllabus and number of questions in question paper.
13	Ensure that you do not make the following common types of errors committed by the Examiner in the past:-
14	 Leaving answer or part thereof unassessed in an answer book. Giving more marks for an answer than assigned to it. Wrong totaling of marks awarded on an answer. Wrong transfer of marks from the inside pages of the answer book to the title page. Wrong question wise totaling on the title page. Wrong totaling of marks of the two columns on the title page. Wrong grand total. Marks in words and figures not tallying/not same. Wrong transfer of marks from the answer book to online award list. Answers marked as correct, but marks not awarded. (Ensure that the right tick mark is correctly and clearly indicated. It should merely be a line. Same is with the X for incorrect answer.) Half or a part of answer marked correct and the rest as wrong, but no marks awarded. While evaluating the answer books if the answer is found to be totally incorrect, it should be marked as cross (X) and awarded zero (0)Marks.
15	Any unassessed portion, non-carrying over of marks to the title page, or totaling error detected by the candidate shall damage the prestige of all the personnel engaged in the evaluation work as also of the Board. Hence, in order to uphold the prestige of all concerned, it is again reiterated that the instructions be followed meticulously and judiciously.
16	The Examiners should acquaint themselves with the guidelines given in the "Guidelines for Spot Evaluation" before starting the actual evaluation.
17	Every Examiner shall also ensure that all the answers are evaluated, marks carried over to the title page, correctly totaled and written in figures and words.
18	The candidates are entitled to obtain photocopy of the Answer Book on request on payment of the prescribed processing fee. All Examiners/Additional Head Examiners/Head Examiners are once again reminded that they must ensure that evaluation is carried out strictly as per value points for each answer as given in the Marking Scheme.

55/2/3 Page **2** of **16**

	MARKING SCHEME : PHYSICS (042) CODE :55/2/3		
Q.No	VALUE POINTS/EXPECTED ANSWERS	MARKS	TOTAL
	SECTION-A		MARKS
1.	(D) $\frac{1}{3}$	1	1
2.	(A) $\frac{\mathbf{v}_d}{2}$	1	1
3.	(B) Resistance of the coil	1	1
4.	(C) 31.4µWb	1	1
5.	(D) Magnetic Flux and Power both	1	1
6.	$(A)\frac{5\pi}{6}$	1	1
7.	(C) III	1	1
8.	(B) $8x10^{-28}$	1	1
9.	(C) P	1	1
10.	$(\mathbf{B}) \frac{1}{\lambda_1} + \frac{1}{\lambda_2} = \frac{1}{\lambda_3}$	1	1
11.	(B) The barrier height increases and the depletion region widens.	1	1
12.	(C) $\frac{1}{K}$	1	1
13.	(A) Both Assertion(A) and Reason (R) are true and Reason(R) is the correct explanation of the Assertion (A)	1	1
14.	(C) Assertion(A) is true, but Reason (R) is false	1	1
15.	(B) Both Assertion(A) and Reason (R) are true but Reason(R) is not the correct explanation of the Assertion (A)	1	1
16.	(A) Both Assertion(A) and Reason (R) are true and Reason(R) is the correct explanation of the Assertion (A)	1	1
	SECTION- B		
17.	Deriving relation 2		
	V = IR	1/2	
	$El = \frac{I\rho l}{A}$ (V= El, $R = \frac{\rho l}{A}$)	1/2	
	$(\mathbf{v} - \mathbf{L}\iota, \ \mathbf{K} = \frac{1}{A})$		
	$E = \frac{I}{A} \rho$	1/2	
	$E = \sigma \rho$	17	
10	L - op	1/2	2
18.	Effect on energy gap and justification		
	(i) Trivalent impurity $\frac{1}{2} + \frac{1}{2}$		
	(ii) Pentavalent impurity $\frac{1}{2} + \frac{1}{2}$		
	(i) Decreases	1/2	
	Justification: An acceptor energy level is formed just above the top of the valence band.	1/2	

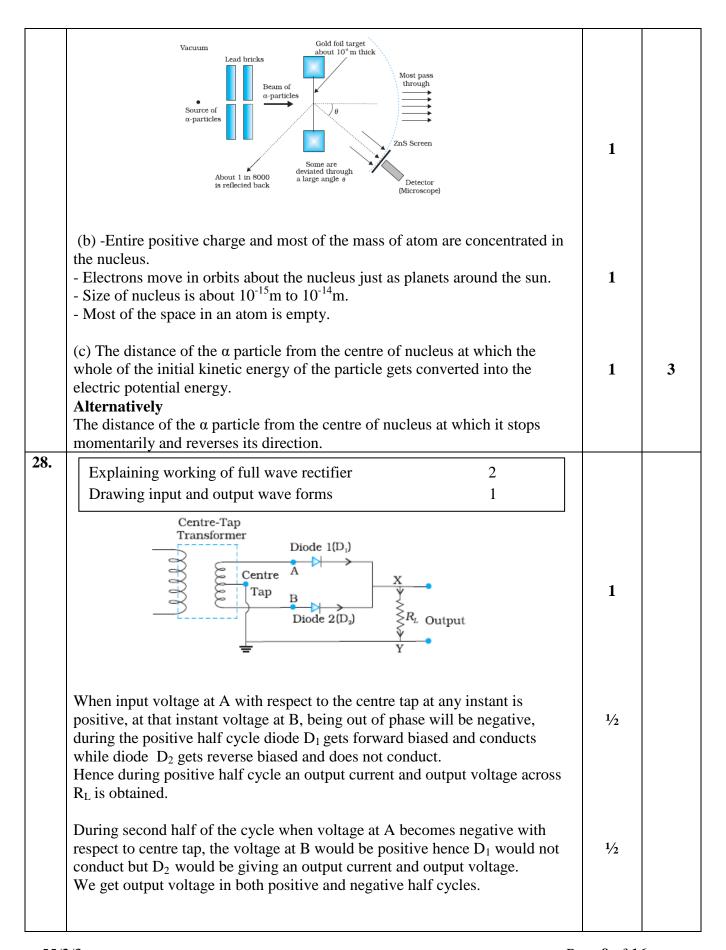

55/2/3 Page **3** of **16**

	(ii) De	ecreases	1/2	
	. ,	cation: A donor level is formed just below the bottom of conduction	1/2	2
	band.		/2	
	Alteri	natively		
	Electron energy	E_C $= C_C$		
	(Note	: Award the credit of justification if a student draws band diagram)		
19.	(a)	Obtaining expression for resultant intensity 2		
	$x_1 = a c$	$\cos \omega t$		
	$x_2 = a c$	$\cos(\omega t + \phi)$	1/2	
	$x = x_1 - x_2$	$-x_2$		
	$=a(\cos \theta)$	$s \omega t + \cos(\omega t + \phi)$		
		$\cos(\omega t + \frac{\phi}{2})\cos\frac{\phi}{2}$	1/	
	$=2a\cos$	$\cos\frac{\phi}{2}\cos(\omega t + \frac{\phi}{2})$	1/2	
		$(amplitude)^2$ where K is a constant.	1/2	
	=K(2a)	$a\cos\frac{\phi}{2}y^2$		
	$=4I_0$ c	$\cos^2\frac{\phi}{2}$	1/2	
		a ² = intensity of each incident wave. rd full credit of this part for all other alternative correct methods) OR		
	(b)	Effect and justification		
		(i) Source slit moved closer to plane of slits 1		
		(ii) Separation between two slits 1		
	(i)Sha	rpness of interference pattern decreases		
		$\frac{s}{S} < \frac{\lambda}{d}$		
	As S d	lecreases, interference patterns produced by different parts of the source	1	
		p and finally fringes disappear.		
	Alteri	natively		
		source slit is brought closer to the plane of the slits, the screen gets		
	illumi	nated uniformly and fringes disappear.		

55/2/3 Page **4** of **16**

	Alternatively Interference pattern is not formed.		
	(Note: Award full credit of this part if a student merely attempts this part.)		
	(ii) $\beta = \frac{\lambda D}{d}$	1/2	
	As d increases, β decreases and fringes disappear.	1/2	2
20.	Finding ratio of period of revolution 2		
	$T = \frac{2\pi r_n}{r_n}$	1/2	
	v_n $r_n \alpha n^2$		
	$v_n \alpha \frac{1}{n}$	1/2	
	$T \alpha n^3$	1/2	
	$\frac{T_2}{T_1} = \frac{(n_2)^3}{(n_1)^3}$		
	$T_1 \qquad (n_1)^3$		
	$=\frac{(2)^3}{(1)^3}$		
	$=\frac{8}{1}$	1/2	2
21.		72	
	Finding focal length 1 ½ Nature of the lens ½		
	For convex lens in air		
	$\frac{1}{f_a} = \left(\frac{n_g}{n_a} - 1\right) \left(\frac{1}{R_1} - \frac{1}{R_2}\right)$		
	For convex lens in liquid. 1. $\binom{n_2}{2}$ $\binom{n_1}{2}$ $\binom{n_2}{2}$		
	$\frac{1}{f_l} = \left(\frac{n_g}{n_l} - 1\right) \left(\frac{1}{R_1} - \frac{1}{R_2}\right)$	1/2	
	$f_{t} = \frac{1.52 - 1}{1}$	1/	
	$\frac{f_l}{f_a} = \frac{1}{1.52 - 1.65}$ $\frac{1}{1.65}$	1/2	
	= - 6.6		
	$f_t = -6.6 f_a$ $= -99 \text{cm}$	1/2	
	Nature of the lens: Diverging/ behaves like a concave lens.	1/2	2
22	SECTION- C		
22.	Explaining nature of force ½		
	Obtaining expression of force 1½		
	Defining one ampere 1		

55/2/3 Page **5** of **16**

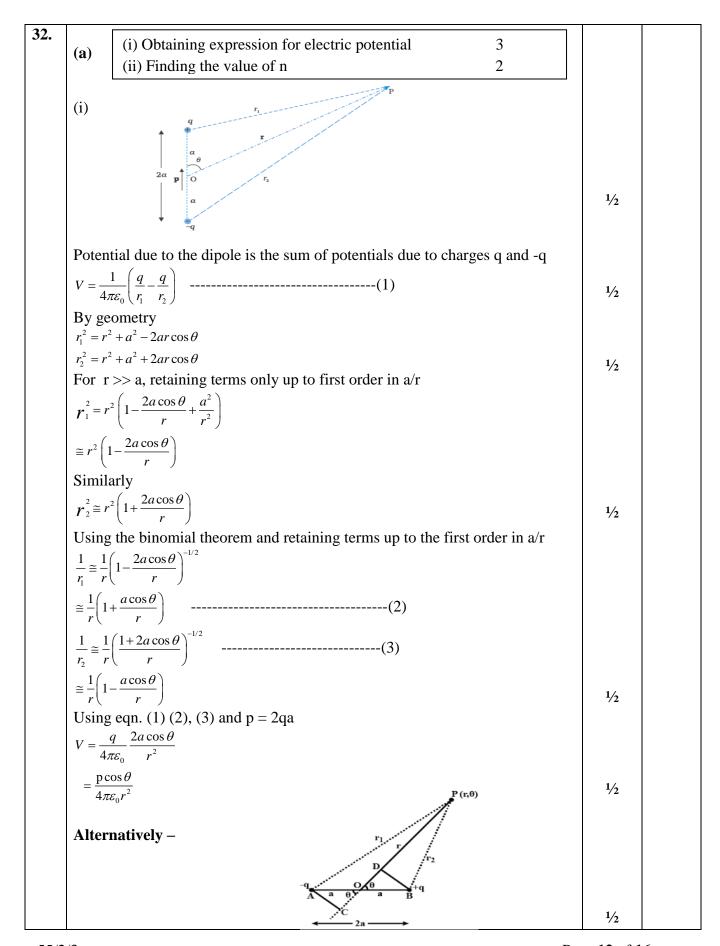


	LID: 0		
	$\tau = IabB\sin\theta$ $\tau = IAB\sin\theta \qquad \text{(where A = ah & m = IA)}$		
	(where 11 – ab & m – m)	1/2	2
	$\vec{\tau} = \vec{m} \times \vec{B}$	72	3
23.	(a) Factors affecting speed of Electromagnetic wave1(b) Production of Electromagnetic wave1(c) Sketch of Electromagnetic wave1		
	(a) Speed of EM waves $v = \frac{1}{\sqrt{\mu \varepsilon}}$		
	Speed depends upon		
	(i) Permittivity (ε) of medium	$\frac{1}{2} + \frac{1}{2}$	
	(ii) Magnetic permeability (μ) of medium		
	(b) Accelerated charges or oscillating charges produce electromagnetic waves (c)	1	
	x B B		
	y	1	3
24.	(a) Finding output voltage 1 (b) Finding instantaneous voltage 1 (c) Finding current 1		
	(a) $V_P(\text{rms}) = \frac{140}{\sqrt{2}} = \frac{140}{1.4} = 100V$	1/2	
	$\therefore V_s = \frac{N_s}{N_p} V_p = \frac{1000}{200} 100 = 500 V$	1/2	
	(b) $v_s = 500\sqrt{2} \sin 100 \text{ pt} = 700 \sin 100 \text{ pt}$ (c) Power Output = Power Input	1	
	$I_s = \frac{5000}{500} = 10A$	1	3
25.		1	<u> </u>
	Finding magnitude and direction of current in AG, BF and CD 1+1+1		

55/2/3 Page **7** of **16**

	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1/2	
	By Kirchoff's Laws (at point B) $I_1 + I_2 = I_3 \qquad(1)$ In the closed loop AGFBA $3 + 2I_3 - 6 + 4I_2 + 2I_3 = 0$	1/2	
	$I_{2} + I_{3} = \frac{3}{4}$ From (i) $2I_{1} + I_{2} = \frac{3}{4}$ (3)	1/2	
	In closed loop BFDCB - 4I ₂ + 6 + 2I ₁ - 6 + 2I ₁ =0	1/2	
	$I_2 - I_1 = 0$ $I_2 = I_1$ (4) Putting in (3)	1/2	
	$I_1 = \frac{1}{4}A$ From (4)		
	$I_2 = \frac{1}{4}A$ From (2) $I_3 = \frac{1}{2}A$	1/2	3
26.	(a) Three characteristics 1 ½ (b) Identifying more stable nucleus and reason 1 ½ (a) Characteristics of nuclear forces:- 1. Saturated in nature		
	 Attractive for distances larger than r₀ and repulsive for distance less than r₀ Do not depend on nature of electric charge i.e. same for n-n, n-p and p-p pairs. Much stronger than gravitational forces. 	11/2	
	(Any three) (b) ${}_{4}^{8}X$ is more stable	1/2	
	The ratio of number of neutrons to the number of protons is more in ${}^{8}_{4}X_{\text{than}} {}^{5}_{3}Y$	1	3
27.	(a) Drawing schematic arrangement 1 (b) Explaining conclusions 1 (c) Defining distance of closest approach 1		

55/2/3 Page **8** of **16**


55/2/3 Page **9** of **16**

	Output wareform at B Wereform at A Control wareform at B Control w	1	3
29.	(i) Since no option is correct, award 1 mark to all students.(ii) (D) 800 nm	1 1	
	(iii) (a) (A) $\frac{\sqrt{3}}{2}$	1	
	OR		
	(b) (B) $\sin^{-1}\left(\frac{4}{5}\right)$	1	
	(iv) (A) $\sin^{-1} \sqrt{n^2 - 1}$	1	4
30.	(i) (B) The internal resistance of a cell decreases with the decrease in temperature of the electrolyte.	1	
	(ii) (B) 2.8 V	1	
	(iii) (A) $\varepsilon = V_{+} + V_{-} > 0$ (iv) (a) (D) 0.2A	1	
	OR		4
31.	(b) (A) 1.0Ω	1	4
	(i) Two differences between interference pattern and diffraction pattern 2 (ii) Intensity distribution graph 1 (iii) Finding intensity of light 2		
	(i)		
	Interference Diffraction		
	1 Bands are equally spaced Bands are not equally spaced.	1.1	
	Intensity of bright bands is same. Intensity of maxima decreases on either side of central maxima.	1+1	
	3 First maxima is at an angle λ/a First minima is at an angle λ/a		
	(ii) I		
	3λ 2λ 1λ Ο 1λ 2λ 3λ	1	
	→ Path differnce		
	(iii) Path difference $(\Delta) = \lambda$		

55/2/3 Page **10** of **16**

$\phi = \frac{2\pi\Delta}{\lambda}$	1/2	
$\phi = 2\pi$		
$I = 4I_0 \cos^2 \frac{\phi}{2}$		
$K = 4I_0 \cos^2 \pi = 4I_0$	1/2	
Path difference = $\frac{\lambda}{6}$		
$\phi = \pi/3$		
$I = 4I_0 \cos^2 \frac{\pi}{6}$	1/2	
· · · · · · · · · · · · · · · · · · ·	72	
$=4I_0 \times \frac{3}{4}$		
$=\frac{3}{4}K$	1/2	
OR (b)		
(b) (i) Drawing labeled ray diagram 1		
Derivation of magnifying power 2		
(iii) Finding magnifying power 2		
B' B Objective A' Eyepiece	1	
The magnification obtained by eye-piece lens $m_e = \left(1 + \frac{D}{f_e}\right)$ The magnification obtained by objective lens $m_e = \frac{v_0}{f_e}$	1/2	
The magnification obtained by objective lens $m_0 = \frac{v_0}{-u_0}$ Hence the total magnifying power is	1/2	
$m = m_0 \times m_e$	1/2	
$=\frac{v_0}{-u_0}\left(1+\frac{D}{f_e}\right)$	1/2	
$(ii) \mathbf{m} = \left \frac{f_0}{f_e} \right $	1	
Identification of focal length of objective and eyepiece		
$f_0 = 100cm$ $f_e = 5cm$	1/2	
$m = \left \frac{100}{5} \right = 20$		
5	1/2	5
	1	1

55/2/3 Page **11** of **16**

	$+a\cos\theta$		
	$-a\cos\theta$	1/	
V	$\frac{q}{r\varepsilon_0}\left(\frac{1}{r_1}-\frac{1}{r_2}\right)$	1/2	
4π	$ au \mathcal{E}_0 \left(egin{array}{ccc} r_1 & r_2 \end{array} ight)$		
V = -	$\frac{q}{\pi\varepsilon_0} \left(\frac{1}{r - a\cos\theta} - \frac{1}{r + a\cos\theta} \right)$		
4.	$\pi \varepsilon_0 \left(r - a \cos \theta r + a \cos \theta \right)$	1/2	
= -q	$-\left(\frac{2a\cos\theta}{r^2-a^2\cos^2\theta}\right)$		
$4\pi\varepsilon_0$	$(r^2 - a^2 \cos^2 \theta)$	1./	
		1/2	
$=\frac{p}{4\pi\epsilon}$	$\frac{r^2}{r^2} \left(\frac{\cos \theta}{1 - \frac{a^2}{a^2} \cos^2 \theta} \right)$		
<i>→nc</i> ₀	$\left(1-\frac{u}{r^2}\cos^2\theta\right)$	1/2	
г.	$a > a$, neglecting $\frac{a^2}{r^2}$		
For r>	\Rightarrow a, neglecting $\frac{1}{r^2}$		
$V = \frac{F}{4}$	$\frac{2\cos\theta}{2}$	1/2	
	1110	7/2	
	onsider the side of equilateral triangle as 'a'		
Potent	tial energy = U= $\frac{kq_1q_2}{a} + \frac{kq_2q_3}{a} + \frac{kq_1q_3}{a}$	1/2	
Accor	rding to question		
$U = \frac{k}{k}$	$\frac{(q)(2q)}{q} + \frac{k(2q)(nq)}{q} + \frac{k(q)(nq)}{q} = 0$	1/2	
	a a a	/2	
=	$=\frac{2q^2}{a} + \frac{2nq^2}{a} + \frac{nq^2}{a} = 0$		
	$a \qquad a \qquad a \\ 2+2n+n=0$	1/2	
	3n = -2		
	$n=-\frac{2}{2}$	1/2	
	3	/2	
	OR		
(b)	(i) Statement of Gauss's Law 1		
(6)	Obtaining expression for electric field 2		
	(ii) Finding net force on electron 2		
(i) Ele	ectric Flux through a closed surface is equal to $\frac{q}{\varepsilon_0}$, where q is the total		
	v	1	
charge	e enclosed by the surface. $\phi = \frac{q}{\varepsilon_0}$	1	
	natively		
	urface integral of electric field over a closed surface is $\frac{1}{\varepsilon_0}$ times the total		
charge	e enclosed by the surface.		
$\oint \vec{E} \cdot d\vec{S}$	$\sigma = \frac{1}{\varepsilon_0}$		
(Awa	rd $\frac{1}{2}$ mark for writing the formula only.)		
		ı	1

	Surface		
	z charge density σ		
	y y		
	E	1/2	
	2 x		
	(Gaussian surface can be cylindrical also)		
	As seen from figure, only two faces 1 and 2 will contribute to the flux.		
	Flux \vec{E} .ds through both the surfaces is equal and add up.	1/2	
	The charge enclosed by surface is σA , where σ is surface charge density		
	According to Gauss's theorem	1/2	
	$2EA = \sigma A / \varepsilon_0$ $E = \sigma / 2\varepsilon_0$	1/2	
	$\vec{E} = \frac{\sigma}{2\varepsilon_0} \hat{n}$ where \hat{n} is unit vector directed normally out of the plane		
	(ii) $\vec{E} = \frac{\lambda}{2\pi\varepsilon_0 r} \hat{r}$		
	According to question		
	E_1 (at point P) = $\frac{\lambda_1}{2\pi\varepsilon_0 r_1}$		
	$= \frac{10 \times 10^{-6}}{2\pi \varepsilon_0 (10 \times 10^{-2})} \ (-\hat{j}) \ N/C$	1/2	
	$E_2 \text{ (at point P)} = \frac{\lambda_2}{2\pi\varepsilon_0 r_2}$		
	20×10^{-6}	1/2	
	$= \frac{20 \times 10^{-6}}{2\pi \varepsilon_0 (20 \times 10^{-2})} (-\hat{j}) \ N/C$	/2	
	$E_{net} = \frac{10 \times 10^{-6}}{2\pi\varepsilon_0} \left(\frac{1}{0.1} + \frac{2}{0.2} \right) (-\hat{j}) \ N/C$		
	$=3.6\times10^6 \ (-\hat{j}) \ N/C$	1/	
	$F_{net} = q \times E_{net}$	1/2	
	$= -1.6 \times 10^{-19} \times 3.6 \times 10^{6} \ (-\hat{j}) \ N$		
	$=5.76\times10^{-13}N(\hat{j})$	1/2	5
33.			
	(a)		
	(i) Showing helical path 1 ½		
	Obtaining frequency of revolution 1 ½		
	(ii) Finding magnetic moment of electron 2		

55/2/3 Page **14** of **16**

z pitch radius	1/2	
$\mathbf{v}_{\perp} = \mathbf{v} \sin \theta$ is perpendicular to $\vec{\mathbf{B}}$ and		
$v_{\parallel} = v\cos\theta$ is parallel to \vec{B}		
Due to v_{\perp} the charge describes circular path and v_{\parallel} pushes it in the direction of \vec{B} . Therefore under the combined effect of two components the charged particle describes helical path, as shown in the figure. The centripetal force	1	
$\frac{mv_{\perp}^{2}}{r} = B qv_{\perp}$	1/2	
ľ	1/	
$v_{\perp} = \frac{Bqr}{m} \qquad (v_{\perp} = v \sin \theta)$	1/2	
Time period = $T = \frac{2\pi r}{v_{\perp}}$ = $\frac{2\pi m}{Bq}$		
$frequency v = \frac{1}{T} = \frac{Bq}{2\pi m}$	1/2	
(ii) Magnetic moment $m = I A$		
$I = \frac{e}{T} = ev$	1/2	
$=1.6\times10^{-19}\times8\times10^{14}$	1./	
$=1.28 \times 10^{-4} A$	1/ ₂ 1/ ₂	
$M = 1.28 \times 10^{-4} \times 3.14 \times (2 \times 10^{-10})^{2}$ $= 5.12\pi \times 10^{-24} Am^{2} = 1.6 \times 10^{-23} Am^{2}$	1/2	
OR		
(i) Definition of current sensitivity Showing dependence of current sensitivity & explanation (ii) Calculation of resistance 2		
(i) Deflection produced per unit current is called its current sensitivity. $I_s = \frac{\theta}{I} = \frac{NBA}{K}$	1	
Current sensitivity can be increased by (a) increasing number of turns in coil		

55/2/3 Page **15** of **16**

(b) increasing area of coil in magnetic field	1	
(c) decreasing K (Torsional Constant)		
(any one)		
$V_s = \frac{\theta}{V} = \frac{NBA}{KR}$		
If current sensitivity is increased by increasing number of turns of the coil, the resistance of the galvanometer will also increase. Thus voltage sensitivity	1	
may not increase.		
(ii) $V = I_G(R+G)$		
$R = \frac{V}{I_G} - G$	1/2	
$=\frac{100}{20\times10^{-3}}-15$	1/2	
=5000-15	1/2	
$=4985\Omega$	72	
By connecting 4985 Ω in series with galvanometer it is converted to voltmeter	1/2	5
of range (0-100V)	72	3

55/2/3 Page **16** of **16**